PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT for OHIO BLENDERS PROPERTY

NORTHWEST TRIANGLE INITIATIVE City of York York County, Pennsylvania

September 2009

Prepared for:

The City of York Redevelopment Authority
49 East Market Street
York, PA

Prepared by:

ARM Group Inc. Hershey, Pennsylvania

(ARM Project 07214)

ARM Group Inc.

Earth Resource Engineers and Consultants

1129 W. Governor Road, P.O. Box 797 - Hershey, PA 17033-0797

Voice: (717) 533-8600 Fax: (717) 533-8605

E-mail: info@armgroup.net

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT for OHIO BLENDERS PROPERTY

NORTHWEST TRIANGLE INITIATIVE City of York York County, Pennsylvania

Prepared for:

The City of York Redevelopment Authority 49 East Market Street York, PA

By:

ARM Group Inc. 1129 West Governor Road P.O. Box 797 Hershey, PA 17033-0797

September 2009

ARM Project 07214

Respectfully submitted:

Stephen B. Fulton, P.G., P.E.

Vice President and Senior Geologist

TABLE OF CONTENTS

					<u>Page</u>
1.0	IN	TRO	ODUCTION		1
	1.1		Project Background		
	1.2	2	Geologic Setting		
	1.3	;	Previous Investigation Activities		
2.0	SI	TE A	ASSESSMENT ACTIVITIES	•••••	3
	2.1		Sampling Rationale and Methodology		3
	2.2	2	Sampling Activities and Results		
			2.2.1 Soil Sampling		
			2.2.2 Groundwater Sampling		5
	2.3	;	Pre-demolition Site Inspection		
3.0	SU	MN	IARY AND CONCLUSIONS	•••••••••••••••••••••••••••••••••••••••	6
			LIST OF FIGURES		
Figure	1	Site	e Layout	Following	Text
Figure			1 Sampling Summary (Northwest corner)		
Figure			1 Sampling Summary (Northeast corner)		
Figure			1 Sampling Summary (Southwest corner)		
Figure			oundwater Contour Map for June 29, 2009		
Figure			oundwater Contour Map for July 27, 2009		
			LIST OF TABLES		
Table 1			mmary of Soil Sampling Results	_	
Table 2			oundwater Elevation Summary		
Table 3	3	Sui	mmary of Groundwater Sampling Results	Following	g Text
			LIST OF APPENDICES		
Append Append			Pre-Demolition Site Inspection ReportLaboratory Analytical Results		
Append			Historical Laboratory Analytical Results		
Append			Well Logs		
Append			Site Photographs		

I

1.1 Project Background

This Phase II Environmental Site Assessment Report (Phase II ESA) has been prepared by ARM Group Inc. (ARM) to summarize the environmental site characterization activities conducted to date for the Ohio Blenders property located within the City of York, York County, Pennsylvania. This report has been prepared at the request of the City of York Redevelopment Authority (RDA), a non-profit organization that is leading an initiative to remediate and redevelop properties within an approximately 14.5-acre portion of the City of York that is referred to as the Northwest Triangle (NWT) Initiative. The NWT is located in the northwestern corner of York, generally bounded to the north and west by the Codorus Creek, to the east by North Beaver Street, and to the south by West Gay Avenue; a general depiction of the site and surrounding area is presented on the attached Figure 1. The goal of the NWT Initiative is to revitalize and enhance this portion of the City of York through the demolition and/or remodeling of contaminated, abandoned and/or under-utilized properties, and to establish new residential and commercial facilities.

This Phase II ESA presents the current investigation results for the Ohio Blenders (AlfaGreen Supreme) property located at 260 North Beaver Street and 132-152 North Pershing Avenue, in the City of York, York County, Pennsylvania (see Figure 1). The site encompasses approximately 2.04 acres, and is split up by railroad right-of-ways that are owned by York Rail. Ohio Blenders has eight grain storage silos and a small office located in the northwestern corner of the property. Review of historical information indicates that the property was originally used for coal and utility pole storage prior to the 1950s. Beginning in the mid-1950s, the property was used as a feed mill, and that use has continued up to the date of ARM's investigation.

The Ohio Blenders has undergone various stages of investigation. Phase I and limited Phase II ESAs were completed by other firms prior to ARM's involvement with the project. ARM was subsequently contracted by the RDA to perform additional site sampling and characterization of the property, and to support the development and implementation of environmental remediation plans. ARM's work was conducted in accordance with the June 2007 Supplemental Phase II Environmental Site Assessment (ESA) Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP), which was reviewed and approved by the Pennsylvania Department of Environmental Protection (PADEP).

1.2 Geologic Setting

The NWT site is underlain by the Conestoga Formation and the Pure Limestone Member of the Kinzers Formation. The Conestoga Formation consists of impure, gray limestone. Both units are susceptible to sinkholes and a highly irregular, pinnacled bedrock surface may occur below a deceptively smooth land surface.

The site is located within the Codorus Creek watershed, and the Creek is the receptor for local surface and groundwater. Groundwater and surface water at and in the vicinity of the site flows to the north and northwest. Groundwater is 13 to 21 feet below the ground surface.

1.3 Previous Investigation Activities

Various phases of investigation were conducted prior to ARM's most recent investigation activities. These previous investigation activities included the following:

- Edge Environmental, Inc. prepared an initial Phase I Environmental Site Assessment Report dated June 1, 2004, which addressed all of the NWT properties of concern. For the Ohio Blenders property, this report identified historical site uses and potential environmental issues. State and federal records were reviewed, a site reconnaissance was performed, and local officials, owners, and occupants were interviewed regarding the site's environmental history. The report identified two coal storage yards (Coal Yards No. 1 and 2) and a former utility pole storage area as potential Areas of Concern (AOCs) at the property.
- A Revised Phase I Environmental Site Assessment (ESA) of the properties of concern was completed by Pennoni Associates, Inc. on June 2, 2005. This report expanded on the Edge Environmental assessment report, and included Sanborn maps, historical aerial photographs, and an Environmental Data Resources (EDR) Report. Historical aboveground storage tanks (ASTs), two fire-proof doors, potential PCBs, PAHs, metals associated with the railroad tracks, and numerous mercury-containing thermostats were identified as items of potential environmental concern at the site.
- GTS Technologies, Inc. (GTS) completed an Interim Site Characterization Report for the Keystone Color Works and Ohio Blenders properties dated December 21, 2005. Three geophysical surveys, including metal detection, terrain conductivity, and groundpenetrating radar, were performed on the Ohio Blenders property. The geophysical surveys identified six potential USTs. Potential PCB-containing transformers were also found on the Ohio Blenders property. Thirty six (36) surface soils samples were collected across the Ohio Blenders property, and antimony, arsenic, total chromium, lead and 1,2-diphenlyhydrazine were detected in soils at concentrations that exceed the associated PADEP Statewide Health Medium Specific Concentrations (MSCs) in Coal Yards No. 1 and 2. An additional 12 surface soil samples were collected from the area where utility poles had been stored, and the concentrations of creosote-related compounds in these soil samples did not exceed any PADEP MSCs. Three surface soil samples were collected from the area where the transformers were located, and the concentrations of PCBs in these samples were below the applicable PADEP MSCs. Eight geoprobe borings were also completed across the site near the suspected UST systems; soil samples collected from these borings were analyzed for leaded gasoline parameters. One sample indicated a concentration of lead in excess of the PADEP MSC, although all other results were below the applicable PADEP MSCs. A summary of this

data from the GTS report is presented in Appendix C, along with the analytical data sheets.

2.0 SITE ASSESSMENT ACTIVITIES

2.1 Sampling Rationale and Methodology

Based on the results of the previous investigation activities, supplemental investigation activities were conducted by ARM to support the identification and delineation of contaminants of potential concern in soils and groundwater at the site, and to ultimately facilitate the completion of an Act 2 Final Report for the site following the implementation of any remediation activities. In general, sampling locations and depths were biased towards locations of potential contamination identified by the previous investigation activities, and/or through supplemental field observations (e.g., staining, odors, proximity to potential discharge locations, and elevated VOC concentrations in air based on field-screening with a photo-ionization detector). In locations were chemical concentrations were previously identified at levels exceeding the PADEP Statewide Health MSCs (25 PA Code Chapter 250), additional sampling was conducted to delineate the lateral and vertical extent of contamination as required by the Chapter 250 regulations for Act 2 projects. Monitoring well locations were selected to help define groundwater flow directions and to provide for monitoring of groundwater quality along the downgradient site boundary.

All sampling and analysis was conducted in accordance with the PADEP-approved Supplemental Phase II ESA SAP and QAPP dated June 2007, as well as all applicable PADEP regulations and guidance for the collection and analysis of environmental samples (e.g., the PADEP's Act 2 Technical Guidance Manual). Specific protocols included the decontamination of non-disposable sampling equipment prior to sample collection, and the proper preservation and chain-of-custody handling of all samples selected for laboratory analysis. All samples were analyzed by Analytical Laboratory Services, Inc. (ALSI) of Middletown, Pennsylvania.

2.2 Sampling Activities and Results

ARM's supplemental sampling of the Ohio Blenders property was conducted from June to August 2009. The sampling activities included: test pit excavations to explore suspected UST locations; the use of Geoprobe direct-push equipment to facilitate the collection of soil samples; installation of groundwater monitoring wells using an air rotary drill rig; and sampling of groundwater. Sample locations were determined based upon analytical results from prior site investigations, including the Edge Environmental, Pennoni Associates, and GTS Technologies reports, and supplemental sampling events were added as appropriate to help better delineate the horizontal and vertical extent of contamination detected at the site.

As generally depicted on the attached Figure 1, the site area consists of eight grain silos, two associated work buildings, a gravel lot, truck scales, and one set of railroad tracks owned by

Ohio Blenders. Rail lines owned by York Rail divide the property south of the silos; the York Rail property was not sampled as part of this work. Selected site photographs are provided in Appendix E.

The sampling activities and results are discussed in the following subsections. The sampling locations are shown on the figures that follow the text of this report, and the sampling results are summarized on the attached data summary tables. The laboratory data sheets from ARM's investigation activities are presented as Appendix B to this report, while historical laboratory data from previous events is presented in Appendix C.

2.2.1 Soil Sampling

A mini-excavator was used on June 12, 2009 to investigate potential UST locations that were identified in the GTS Technologies interim site characterization report. No USTs were discovered during the test pit activities, and it appears that all USTs have been previously removed from the site.

ARM collected 165 shallow and deep subsurface soil samples across the Ohio Blenders property using Geoprobe direct-push equipment. These samples were collected over the course of a series of investigations, from June through August 2009, with the primary goals of characterizing the nature of contamination in the soils at the site, and delineating the vertical and horizontal extent of contamination at the site. The sample locations are shown on the attached Figures 2, 3, and 4, and the laboratory results are summarized on Table 1.

Per the approved SAP, samples were initially collected from the previously identified areas of potential concern, with analyses conducted for the previously identified constituents of potential concern (i.e., arsenic, lead, total chromium and/or 1,2-diphenylhydrazine). Following receipt of the initial samples, subsequent samples were analyzed for arsenic, lead, and/or chromium as needed to help delineate the extent of contamination, as defined by exceedances of the PADEP Statewide Health MSCs. In some cases, the delineation sampling was limited by existing site features, obstructions (e.g., subsurface utilities), and property boundaries. Because there is a different MSC for the different species of chromium, analysis was also conducted for hexavalent chromium (chromium VI) to characterize the species of chromium at the site, and the applicable MSC.

As shown on the attached Table 1, Appendix C, and Figures 2 through 4, a number of samples contained concentrations in excess of the PADEP Statewide Health MSCs. The MSC exceedances were generally limited to the upper 4 feet of soil and fill materials, and the contaminant concentrations typically decrease with depth. Arsenic was by far the most common contaminant detected at the site at elevated concentrations, although lead was detected at concentrations above the MSCs in a few samples collected from the northeast corner of the site. The contamination is believed to be largely associated with previous operations and activities performed on the site (e.g., coal storage), and/or historic fill placement at the site (test pit

excavations indicated that the materials observed near the ground surface contained large amounts of brick, coal ash, and cinders).

2.2.2 Groundwater Sampling

A total of six monitoring wells were installed on the Ohio Blenders property using air-rotary drilling methods. Following installation, each of the monitoring wells was developed by overpumping, although the well yields were relatively low because of the low-permeability of the formation. Monitoring wells MW-3S, MW-4S, and MW-5S were installed to approximately 50 feet below ground surface (bgs), and are used to monitor shallow groundwater. Monitoring wells MW-3B, MW-4B, and MW-5B were installed from 130 feet to 150 feet bgs, and are used to monitor groundwater found in the bedrock at the site. These wells were installed to supplement the information provided by the two monitoring wells (MW-1 and MW-2) previously installed at upgradient properties within the NWT area. The monitoring well locations are shown on the attached Figure 1, and the monitoring well logs are provided in Appendix D.

Groundwater sampling events were conducted on June 29, 2009 and July 27, 2009 to support the groundwater characterization. Depth to groundwater measurements were collected from each of the monitoring wells at the start of each sampling event, and prior to the removal of water from any of the wells. Each of the wells was than purged of water, and samples were collected in accordance with standard PADEP practices.

Groundwater contour maps were developed from the depth-to-groundwater data to estimate groundwater flow directions and gradients. To support the development of these maps, the well casings were surveyed with a level and rod using a local benchmark with an estimated elevation. The groundwater level measurements are summarized on the attached Table 2, and the estimated groundwater table contour maps are presented as Figures 5 and 6. Based on the inferred groundwater contours presented on Figures 5 and 6, the groundwater flow direction in the area is generally towards the northwest corner of the Ohio Blenders property, in the vicinity of monitoring wells MW-4S and MW-4B. Groundwater follow is expected to be towards the creek, although the apparent localized depression in the groundwater table could be the result of preferential flow conditions and/or off-site pumping across the creek.

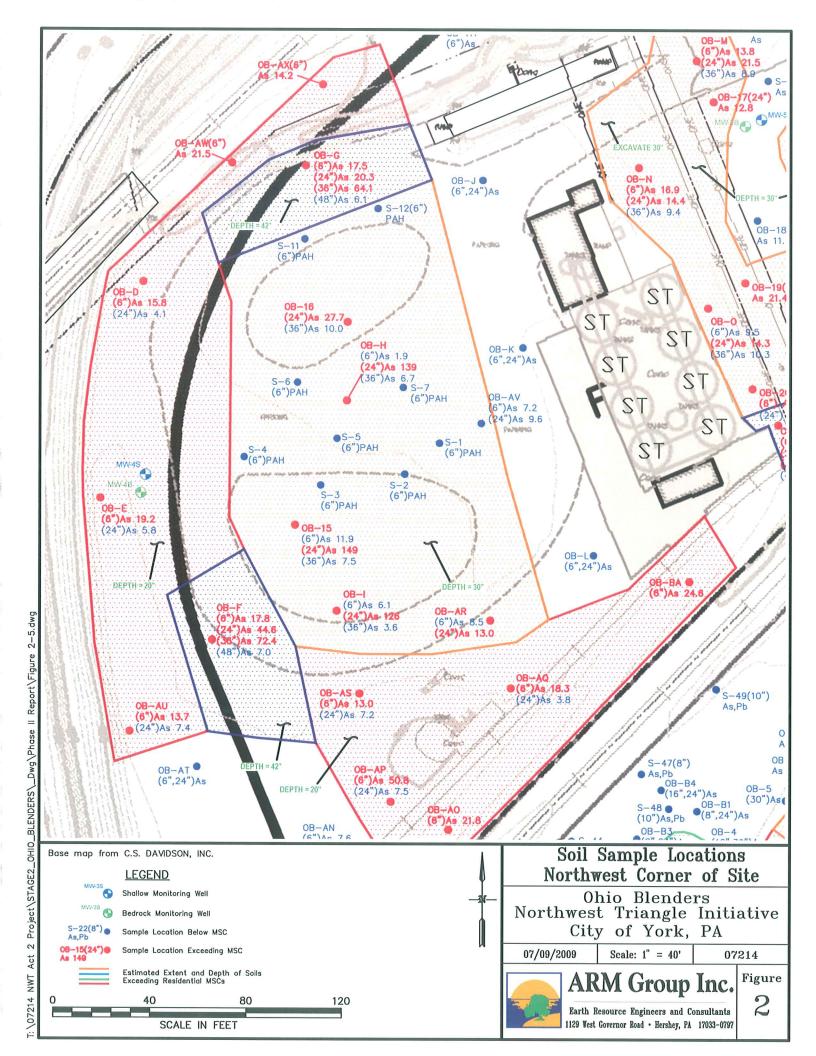
The groundwater quality results are summarized on the attached Table 3, and the analytical data sheets are presented in Appendix B. As presented on Table 3, the analytical results indicate concentrations of lead, trichloroethene (TCE), and bis(2-ethylhexyl)phthalate at concentrations that exceed the PADEP Statewide Health Standards for used aquifers. All exceedances were only slightly above the applicable MSCs, and none of the exceedances occurred during both events at any of the wells. The elevated lead concentrations may have been related to excessive turbidity in the original samples. The TCE was detected at monitoring well pairs MW-4 and MW-5, although the source of the TCE has not been identified in the site soils or elsewhere.

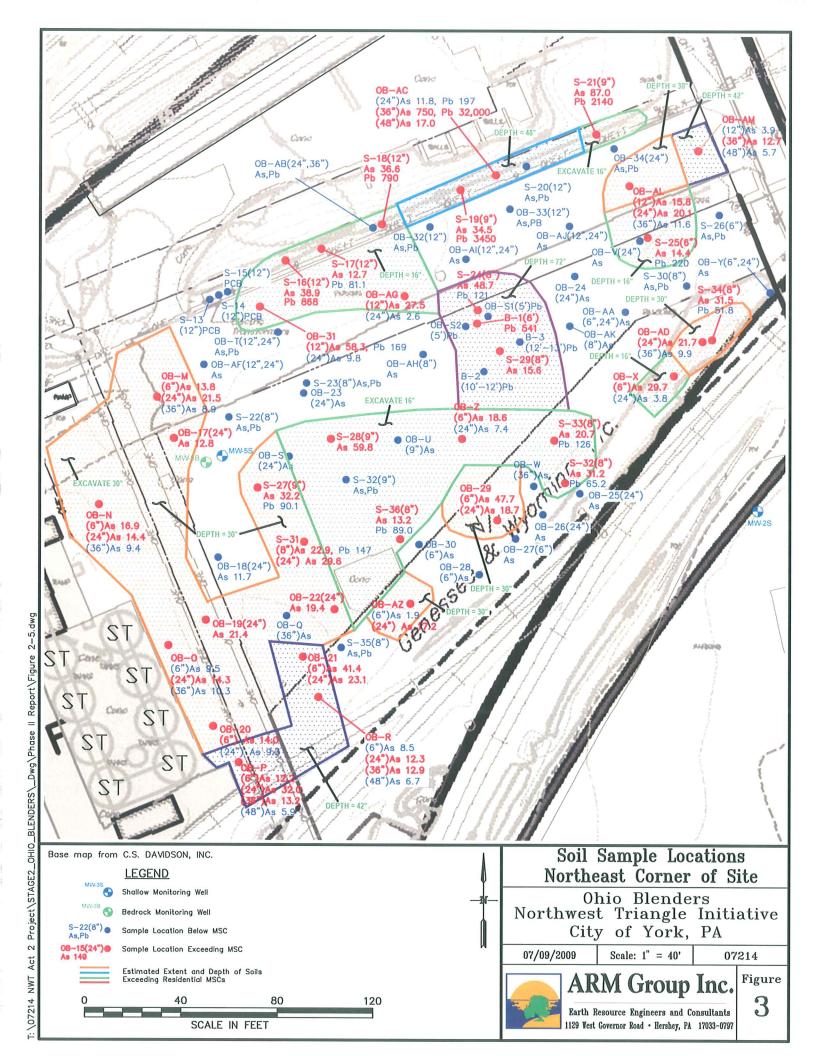
2.3 Pre-demolition Site Inspection

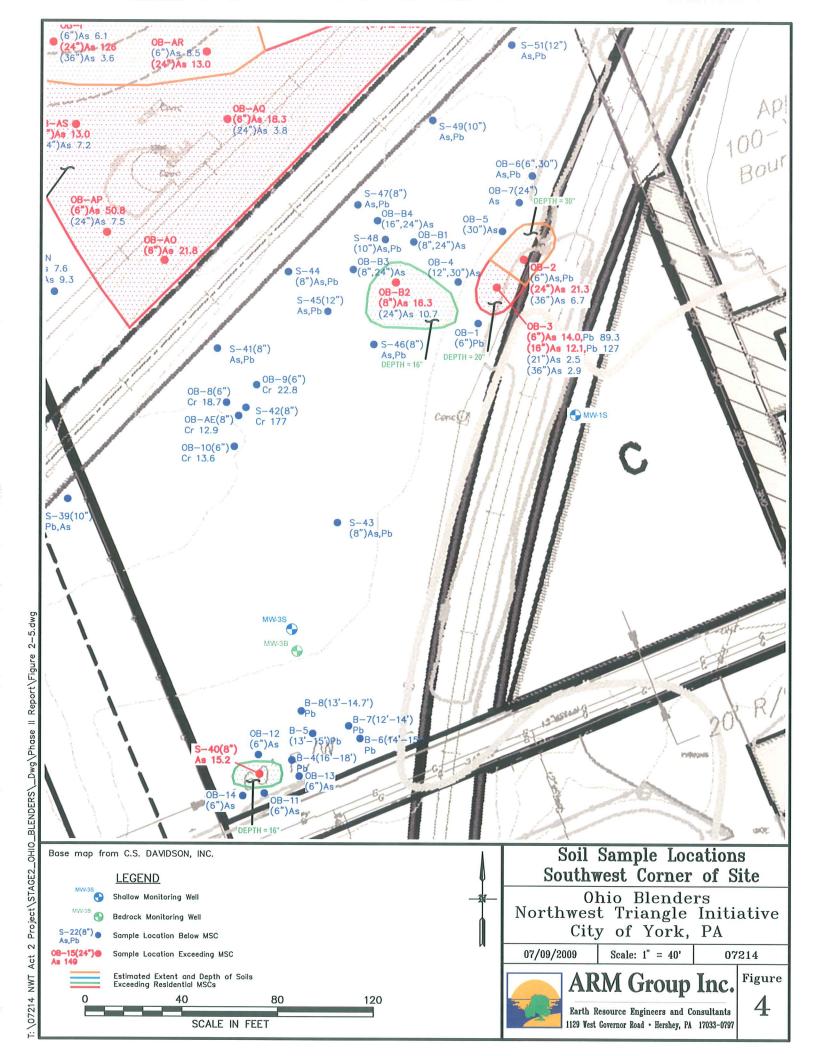
In addition to the investigation of soils and groundwater, a hazardous materials survey of the onsite structures was completed by ARM on July 20, 2009 as part of the site assessment process. These inspection activities included an assessment of potential asbestos, lead-based paint, PCB-containing light ballasts, mercury-containing switches, and other materials that would require special handling and/or disposal in association with any structure demolition and site redevelopment. A copy of the building inspection report and associated results is presented in Appendix A of this report.

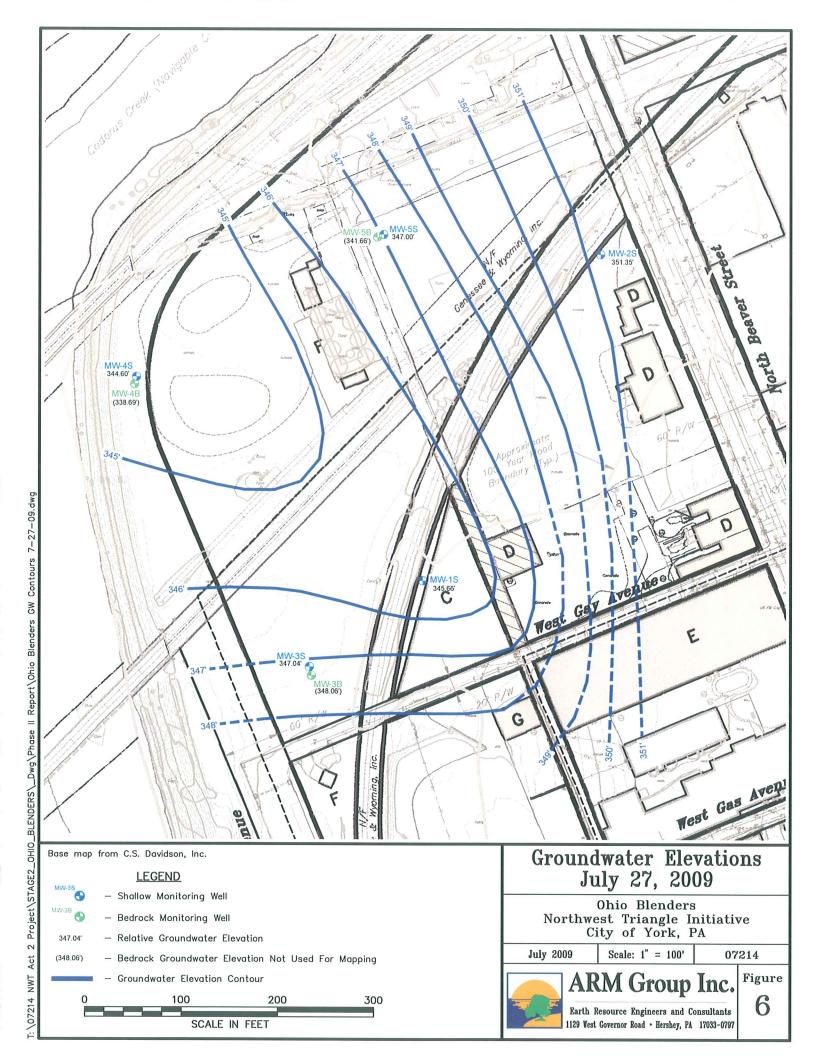
3.0 SUMMARY AND CONCLUSIONS

Based on the site investigation activities discussed above, the environmental conditions at the Ohio Blenders site are generally summarized as follows:


- Soil contamination has been detected across a majority of the site at concentrations that exceed the PADEP Statewide Health MCSs. The contamination is generally limited to the upper 2 to 4 feet of material across the site, with concentrations decreasing with depth. Arsenic was the most commonly detected contaminant, although lead was also detected at elevated concentrations. The total volume of soil that exceeds the PADEP's Statewide Health MSCs for unrestricted use is approximately 6,000 cubic yards (cy), while the volume of soil that exceeds the PADEP's MSCs for non-residential use is approximately 600 cy.
- Groundwater flow at the site is inferred to be towards the northwest corner of the site towards the Codorus Creek. Lead, TCE, and bis(2-ethylhexyl)phthalate were detected in groundwater at concentrations that exceed the PADEP's Statewide Health MSCs for used aquifers. The exceedances were generally marginal and intermittent, and no apparent source area was identified. Because groundwater is not used at the site, there are no current exposure pathways of concern.


To the extent required, remediation of the site should be conducted under Pennsylvania's Act 2 program, as presented in the regulations at 25 PA Code Chapter 250. The cleanup standard selected should be compatible with the current and proposed future site use, and could include soil removal, soil treatment, in-place containment, and/or institutional controls to prevent unacceptable exposures to soil and groundwater. On behalf of the City of York RDA, a Notice of Intent to Remediate (NIR) the site was submitted to the PADEP in September 2008. Following the completion of any remedial activities and PADEP approval of a Final Report, environmental cleanup liability protection would be available to the site owner and remediator.




FIGURES

TABLES

Table 1 Analytical Results for Total Metals in Soils Sample Dates June 8-12, 2009

Ohio Blenders Property Northwest Triangle Initiative City of York, Pennsylvania

	Residential Direct Contact MSC (0-	Non-Residential Direct Contact	Soil to Groundwater														
Parameter	15')	MSC (0-2')	MSC	OB-1 (6")	OB-2 (6")	OB-3 (6")	OB-3 (16")	OB-4 (30")	OB-5 (30")	OB-6 (6")	OB-6 (30")	OB-7 (24")	OB-8 (6")	OB-9 (6")	0B-10 (6")	OB-11 (24")	OB-12 (6")
Arsenic	12	53	150	NA	NA	14.0	12.1	6.4	4.9	8.2	5.3	6.2	NA	NA	NA	10.6	6.0
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.7	22.8	13.6	NA	NA
Lead	500	1,000	450	97.5	232	89.3	127	NA	NA	68.9	48.5	NA	NA	NA	NA	NA	NA

	Residential Direct	Non-Residential	Soil to														
	Contact MSC (0-	Direct Contact	Groundwater														
Parameter	15')	MSC (0-2')	MSC	OB-13 (6")	OB-14 (6")	OB-15 (24")	OB-16 (24")	OB-17 (24")	OB-18 (24")	OB-19 (24")	OB-20 (6")	OB-20 (24")	OB-21 (6")	OB-21 (24")	OB-22 (24")	OB-23 (24")	OB-24 (24")
Arsenic	12	53	150	10.5	5.9	149	27.7	12.8	11.7	21.4	14.0	9.3	41.4	23.6	19.4	9.6	9.1
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	500	1,000	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	Residential Direct	Non-Residential	Soil to													
	Contact MSC (0-	Direct Contact	Groundwater													
Parameter	15')	MSC (0-2')	MSC	OB-25 (24")	OB-26 (24")	OB-27 (6")	OB-28 (6")	OB-29 (6")	OB-29 (24")	OB-30 (6")	OB-31 (12")	OB-32 (12")	OB-33 (12")	OB-34 (12")	OB-S1 (5')	OB-S2 (5')
Arsenic	12	53	150	4.5	4.0	NA	8.0	47.7	18.7	5.1J	58.3	7.1	9.7	5.2	NA	NA
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	500	1,000	450	NA	NA	NA	NA	NA	NA	NA	169	101	392	144	91.3	72.0
1,2-Diphenylhydrazine	22	99	0.083	NA	< 0.0198	< 0.0174	< 0.0187	< 0.0172	< 0.0191	< 0.0164	NA	NA	NA	NA	NA	NA

All values in milligrams per kilogram (mg/kg)

MSC = PADEP Statewide Health Medium Specific Concentration (25 PA Code Chapter 250)

821

Result exceeds PADEP MSC

NA = Not Analyzed

Table 1 (continued) Analytical Results for Total Metals in Soils Sample Date July 2 2009

Ohio Blenders Property Northwest Triangle Initiative City of York, Pennsylvania

	Residential Direct	Non-Residential	Soil to																			
	Contact MSC (0-	Direct Contact	Groundwater																			
Parameter	15')	MSC (0-2')	MSC	OB-2 (24")	OB-3 (24")	OB-3 (36")	OB-4 (12")	OB-15 (6")	OB-15 (36")	OB-31 (24")	OB-B1 (8")	OB-B1 (24")	OB-B2 (8")	OB-B2 (24")	OB-B3 (8")	OB-B3 (24")	OB-B4 (16")	OB-B4 (24")	OB-D (6")	OB-D (24")	OB-E (6")	OB-E (24")
Arsenic	12	53	150	21.3	2.5	2.9	7.6	11.9	7.5	9.8	8.2	6.4	16.3	10.7	8.8	4.6	7.1	5.9	15.8	4.1	19.2	5.8
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	500	1,000	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

	Residential Direct Contact MSC (0-	Non-Residential Direct Contact	Soil to Groundwater																		1	
Parameter	15')	MSC (0-2')	MSC	OB-F (6")	OB-F (24")	OB-F (36")	OB-G (6")	OB-G (24")	OB-G (36")	OB-H (6")	OB-H (24")	OB-H (36")	OB-I (6")	OB-I (24")	OB-I (36")	OB-J (6")	OB-J (24")	OB-K (6")	OB-K (24")	OB-K (36")	OB-L (6")	OB-L (24")
Arsenic	12	53	150	17.8	44.6	72.4	17.5	20.3	64.1	1.9	139	6.7	6.1	126	3.6	< 0.19	4.4	< 0.19	4.3	6.8	5.0	8.5
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Lead	500	1,000	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									

	Residential Direct	Non-Residential	Soil to																			
	Contact MSC (0-	Direct Contact	Groundwater																	ı		
Parameter	15')	MSC (0-2')	MSC	OB-M (6")	OB-M (24")	OB-M (36")	OB-N (6")	OB-N (24")	OB-N (36")	OB-O (6")	OB-O (24")	OB-O (36")	OB-P (6")	OB-P (24")	OB-Q (36")	OB-R (6")	OB-R (24")	OB-R (36")	OB-S (24")	OB-T (12")	OB-T (24")	OB-U (9")
Arsenic	12	53	150	13.8	21.5	8.9	16.9	14.4	9.4	9.5	14.3	10.3	12.2	32.0	7.6	8.5	12.3	12.9	11.3	4.0	3.3	5.2
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA												
Lead	500	1,000	450	NA	NA	NA	NA	109	300	NA												

	Residential Direct Contact MSC (0-	Non-Residential Direct Contact	Soil to Groundwater																
Parameter	15')	MSC (0-2')	MSC	OB-V (24")	OB-W (36")	OB-X (6")	OB-X (24")	OB-Y (6")	OB-Y (24")	OB-Z (6")	OB-Z (24")	OB-AA (6")	OB-AA (24")	OB-AB (24")	OB-AB (36")	OB-AC (24")	OB-AC (36")	OB-AD (24")	OB-AE (8")
Arsenic	12	53	150	5.2	4.1	29.7	3.8	7.5	6.8	18.6	7.4	5.9	5.6	10.4	6.2	11.8	750	21.7	NA
Chromium	190,000	190,000	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.9
Chromium VI	94	420	190,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.2
Lead	500	1,000	450	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	463	62.9	197	32,000	NA	NA

All values in milligrams per kilogram (mg/kg)
MSC = PADEP Statewide Health Medium Specific Concentration (25 PA Code Chapter 250)
821
Result exceeds PADEP MSC
NA = Not Analyzed

Table 1 (continued) Analytical Results for Total Metals in Soils Sample Date July 27, 2009

Ohio Blenders Property Northwest Triangle Initiative City of York, Pennsylvania

	Residential Direct	Non-Residential															
	Contact MSC (0-	Direct Contact MSC	Soil to														
Parameter	15')	(0-2')	Groundwater MSC	OB-2 (36")	S-31 (24")	OB-F (48")	OB-G (48")	OB-P (36")	OB-P (48")	OP-R (48")	OB-AC (48")	OB-AD (36")	OB-AF (12")	OB-AF (24")	OB-AG (12")	OB-AG (24")	OB-AH (8")
Arsenic	12	53	150	6.7	29.6	7.0	6.1	13.2	5.9	6.7	17.0	9.9	5.6	2.9	27.5	2.6	2.1
Lead	500	1,000	450	NA	133	NA	NA	NA	NA	NA	NA						

Γ		Residential Direct	Non-Residential											
		Contact MSC (0-	Direct Contact MSC	Soil to										
	Parameter	15')	(0-2')	Groundwater MSC	OB-AI (12")	OB-AI (24")	OB-AJ (12")	OB-AJ (24")	OB-AK (8")	OB-AL (12")	OB-AL (24")	OB-AL (36")	OB-AM (12")	OB-AM (36")
I	Arsenic	12	53	150	5.0	5.8	9.1	7.0	5.3	15.8	20.1	11.6	3.9	12.7

All values in milligrams per kilogram (mg/kg)

MSC = PADEP Statewide Health Medium Specific Concentration (25 PA Code Chapter 250)

821 Result exceeds PADEP MSC

NA = Not Analyzed

Table 1 (continued) Analytical Results for Total Metals in Soils Sample Date August 10, 2009

Ohio Blenders Property Northwest Triangle Initiative City of York, Pennsylvania

	Residential Direct	Non-Residential	Soil to															
	Contact MSC (0-	Direct Contact	Groundwater															
Parameter	15')	MSC (0-2')	MSC	OB-AM (48")	OB-AN (6")	OB-AN (24")	OB-AO (6")	OB-AP (6")	OB-AP (24")	OB-AQ (6")	OB-AQ (24")	OB-AR (6")	OB-AR (24")	OB-AR (36")	OB-AS (6")	OB-AS (24")	OB-AT (6")	OB-AT (24")
Arsenic	12	53	150	5.7	7.6	9.3	21.8	50.8	7.5	18.3	3.8	8.5	13.0	-	13.0	7.2	10.1	9.5

	Residential Direct	Non-Residential	Soil to												
	Contact MSC (0-	Direct Contact	Groundwater												1
Parameter	15')	MSC (0-2')	MSC	OB-AU (6")	OB-AU (24")	OB-16 (36")	OB-AV (6")	OB-AV (24")	OB-AW (6")	OB-AX (6")	OB-AY (6")	OB-AZ (8")	OB-AZ (24")	OB-AZ (36")	OB-BA (6")
Arsenic	12	53	150	13.7	7.4	10.0	7.2	9.6	21.5	14.2	9.2	1.9	17.2	-	24.6

All values in milligrams per kilogram (mg/kg)

MSC = PADEP Statewide Health Medium Specific Concentration (25 PA Code Chapter 250)

Result exceeds PADEP MSC

NA = Not Analyzed

Table 2 Groundwater Elevation Summary

Ohio Blenders Property Northwest Triangle Initiative City of York, Pennsylvania

	Top of Casing	1/15/	/2008	2/21	/2008	6/29/	/2009	7/27	/2009
Monitoring Well	Elevation	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
MW-1S	362.07	47.57	314.50	35.07	327.00	17.83	344.24	16.41	345.66
MW-2S	365.00	13.75	351.25	13.09	351.91	13.48	351.52	13.65	351.35
MW-3S	362.94	NA	NA	NA	NA	15.34	347.60	15.90	347.04
MW-3B	362.96	NA	NA	NA	NA	14.40	348.56	14.90	348.06
MW-4S	366.03	NA	NA	NA	NA	21.13	344.90	21.43	344.60
MW-4B	366.10	NA	NA	NA	NA	20.75	345.35	27.41	338.69
MW-5S	363.91	NA	NA	NA	NA	16.21	347.70	16.91	347.00
MW-5B	363.48	NA	NA	NA	NA	13.79	349.69	21.82	341.66

All elevations in feet, based on estimated local benchmark.

DTW = Depth to groundwater

GWE = Groundwater Elevation

NA = Not Applicable (well was not yet installed)

Table 3 **Groundwater Analytical Results**

Ohio Blenders Property Northwest Triangle Initiative City of York, Pennsylvania

	PADEP Residential	PADEP Residential		MW-1S			MW-2S		MV	V-3S	MV	V-3B	MV	W-4S	MW	-4B	MV	W-5S	MV	V-5B		Trip Blank	
Parameter	Used Aquifer MSC	Non-Use Aquifer MSC	1/15/2008	2/21/2008	9/10/2008	1/15/2008	2/21/2008	7/27/2009	6/29/2009	7/27/2009	6/29/2009	7/27/2009	6/29/2009	7/27/2009	6/29/2009	7/27/2009	6/29/2009	7/27/2009	6/29/2009	7/27/2009	2/21/2008	6/29/2009	7/27/2009
VOLATILES	<u> </u>	î î							ì			1	1										
Acetone	3,700	37,000	8.3J	7.0J	NA	<10.0	7.0J	NA	<10.0	<10.0	9.3J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
2-Butanone	2,800	280,000	<10.0	<10.0	NA	<10.0	<10.0	NA	<10.0	<10.0	7.0J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Carbon Disulfide	1,900	1,900	1.6	0.27J	NA	<1.0	<1.0	NA	0.42J	<1.0	0.73J	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	100	1,000	<1.0	0.23J	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.79J	<1.0	0.52J	<1.0	<1.0	0.35J	<1.0
1,1-Dichloroethane	27	270	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	0.78J	0.60J	0.62J	<1.0	0.45J	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	70	700	<1.0	0.98J	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0	1.5	0.47J	2.5	1.7	2.7	3.2	1.7	1.7	<1.0	<1.0	<1.0
Methylene Chloride	5	500	<1.0	1.2	NA	<1.0	1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	50	<1.0	0.62J	NA	<1.0	<1.0	NA	0.41J	0.47J	<1.0	<1.0	0.63J	<1.0	<1.0	<1.0	1.2	1.5	0.57J	0.55J	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	200	2,000	<1.0	<1.0	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.56J	0.46J	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene	5	50	<1.0	0.30J	NA	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0	4.4	1.8	4.5	3.1	3.8	6.3	2.5	2.9	<1.0	<1.0	<1.0
SEMIVOLATILES																							
Acenaphthene	2,200	3,800	NA	<2.9	< 2.9	3.2	1.7J	NA	0.33J	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	NA	NA	NA
Di-n-Butylphthalate	-	-	NA	<2.9	<2.9	0.60J	<2.8	NA	0.32J	<2.9	0.41J	<2.9	<2.9	<2.9	<2.8	<2.9	<2.9	<2.9	<2.8	<2.8	NA	NA	NA
bis(2-Ethylhexyl)phthalate	6	290	NA	0.92J	< 2.9	<2.9	<2.8	NA	0.86J	<2.9	6.9	3.1	0.79J	<2.9	<2.8	0.88J	4.8	<2.9	<2.8	0.82J	NA	NA	NA
Fluorene	1,500	1,900	NA	<1.9	<1.9	3.8	2.0	NA	0.49J	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	NA	NA	NA
Phenanthrene	1,100	1,100	NA	<1.4	<1.4	1.6	<1.4	NA	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	NA	NA	NA
Pyrene	130	130	NA	<1.4	<1.4	<1.4	<1.4	NA	0.49J	<1.4	<1.4	<1.4	0.57J	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	NA	NA	NA
METALS																						+	
Arsenic	10	50,000	<10	3J	NA	7J	7J	8.3	< 8.0	3.7J	< 8.0	4.6J	< 8.0	6.6J	<8.0	4.1J	< 8.0	3.4J	< 8.0	4.0J	NA	NA	NA
Chromium	100	100,000	47	7	NA	<5	<5	2.3J	2.2J	2.2J	26	3.2J	2.8J	4.5J	2.4J	1.9J	2.6J	3.9J	1.8J	<5	NA	NA	NA
Copper	1,000	1,000,000	<10	12	NA	<10	<10	<10	3.7J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	NA	NA	NA
Lead	5	5,000	<2	<2	NA	7J	<2	<2	5.7J	<2	4.6J	<2	4.9J	<2	7.0	<2	2.8J	<2	5.6J	<2	NA	NA	NA
Nickel	100	100,000	3J	2J	NA	<20	<20	<20	7.6J	<20	9.5J	<20	6.7J	14J	<20	<20	<20	<20	<20	<20	NA	NA	NA
Zinc	2,000	2,000,000	6J	390	NA	5J	<20	<20	30	<20	<20	<20	59	44	18J	8.0J	19J	63	9.4J	8.7J	NA	NA	NA

All values in micrograms per liter (ug/L)

MSC = PADEP Statewide Health Medium Specific Concentration (25 PA Code Chapter 250)

6.9 Result exceeds PADEP Used Aquifer MSC

NA = Not Analyzed

J = indicates concentration estimated by laboratory

APPENDIX A

Pre-Demolition Site Inspection Report

ARM Group Inc.

Earth Resource Engineers and Consultants

July 20, 2009

Shilvosky M. Buffaloe Project Coordinator City of York Department of Economic Development City of York Redevelopment Authority 49 East Market Street York, PA 17401

> Re: Pre-Demolition Site Inspection Ohio Blenders Property Northwest Triangle Project, York, PA ARM Project 07214

Dear Mr. Buffaloe:

ARM Group Inc. (ARM) has completed an asbestos-containing material (ACM), lead-based paint (LBP), and hazardous material (HAZMAT) inspection of the structures situated on the former Ohio Blenders Property, at the Northwest Triangle Project site in the City of York, York County, Pennsylvania. The purpose of this investigation was to determine the location and quantity of ACMs, LBP and HAZMATs (i.e., mercury containing switches and equipment, PCB-containing fluorescent light ballasts, etc.) on and/or within the on-site structure prior to their demolition.

ARM completed the following activities:

- A visual and tactile ACM inspection by Mr. Mark J. Heisey, a PADOLI Licensed Asbestos Inspector (PA License No. 024830);
- A determination for the potential presence of LBP (presumed for coatings applied prior to 1978), based upon the use of colorimetric swabs; and
- an inspection for the presence of hazardous materials.

The inspection was completed on Tuesday June 23, 2009 and revealed the following:

- No suspect ACMs were observed during the inspection, therefore no samples were collected.
- The use of colorimetric swabs did not reveal presence of LBP.

 Miscellaneous consumer-end-packaged paints, cleaners, solvents, lubricating oils, etc. were observed within the on-site buildings. In addition, fluorescent light tubes were observed with the on-site buildings.

At this time ARM does not recommend any additional activities at the site beyond the removal and disposal of all consumer-end-packaged hazardous materials and fluorescent light tubes in accordance with all applicable regulations. In addition, prior to any demolition activities, the demolition contractor must submit to the Pennsylvania Department of Environmental Protection (PADEP) the required *Asbestos Abatement and Demolition/Renovation Notification Form*. This form is used to satisfy the reporting requirements of the PADEP, Pennsylvania Department of Labor and Industry (PADOLI), and USEPA under the NESHAP Regulations.

If you should have any questions or comments, or if you require any additional information, please contact the undersigned at your earliest convenience (717-508-0561).

Sincerely yours, ARM Group Inc.

Mark J. Heisey, CEM, CES ARM Group - Project Manager

11 of out - 1 roject Manager

APPENDIX B.1 Laboratory Analytical Results for Groundwater

APPENDIX B.2

Laboratory Analytical Results for Soil

APPENDIX C

Historical Laboratory Analytical Results

Interim Site Characterization Report Keystone Color Works & Ohio Blenders Properties City of York, Pa. December 1, 2005

Six (6) surficial samples were collected from soils underlying the Keystone Color Works building exterior windows and sills (Photograph 3) to characterize potential contamination from lead-based paint. This area has been identified as "AOC 6 - Keystone Color Works". The samples were analyzed for total lead by United States Environmental Protection Agency (U.S. EPA) Test Method SW-846 6010. Lead was detected above the Statewide Health Standards for residential use and for non-residential use at four (4) of the six (6) sample locations. Table 1 provides a summary of the laboratory analytical results.

TABLE 1
SUMMARY OF SAMPLE RESULTS
SOILS UNDERLYING EXTERIOR WINDOWS

			Sample Sample D	Location epth (ft.)			Statewide	Statewide
Analyte	S-52 1.0	S-53 1.0	S-54 1.0	S-55 1.0	S-56 1.0	S-57 1.0	Health Standard for Residential Use	Health Standard for Non- Residential Use
			Result	(mg/kg)			(mg/kg)	(mg/kg)
Lead	945	702	510	266	107	1,200	450	450

Notes:

945

= One or more Statewide Health Standard exceeded for analyte.

Thirty-six (36) surficial samples were collected from soils on the Ohio Blenders property to characterize potential contamination resulting from the former use of portions of the property as coal storage yards. These areas were identified as "AOC 2 - Coal Yard No. 1" (Photograph 4) and "AOC 5 - Coal Yard No. 2" (Photograph 5). All thirty-six (36) of the samples were analyzed for Priority Pollutant List (PPL) metals by U.S. EPA Test Method SW-846 6010. Twenty-five (25) of the samples were analyzed for PPL semivolatile organic compounds (SVOCs) by U.S. EPA Test Method SW-846 8270. Antimony, arsenic, chromium, and lead were the only PPL metals detected above a Statewide Health Standard. Antimony was detected above the Statewide Health Standards for residential use and non-residential use at one (1) of the thirty-six (36) sample locations. Arsenic was detected at or above the Statewide Health Standards for residential use at eighteen (18) of the thirty-six (36) sample locations, and above the Statewide Health Standard for nonresidential use at three (3) sample locations. Chromium was detected above the selected concentration for residential use at one (1) sample location. Lead was detected above the Statewide Health Standards for residential use and non-residential use at four (4) of the thirty-six (36) sample locations. The only PPL SVOC detected above the Statewide Health Standard for residential use was 1,2-diphenylhydrazine at one sample location. Table 2 provides a summary of the laboratory analytical results.

Interim Site Characterization Report Keystone Color Works & Ohio Blenders Properties City of York, Pa. December 1, 2005

Three (3) surficial samples were collected from soils on the Ohio Blenders property to characterize potential contamination associated with three (3) non-utility electric transformers on the property. These samples were located within the area identified as "AOC 8 - Ohio Blenders Transformers". The samples were analyzed for PCBs according to U.S. EPA Test Method SW-846 8082. No PCB analytes were detected above the Statewide Health Standard for residential use or non-residential use. Table 4 provides a summary of the laboratory analytical results.

TABLE 4 SUMMARY OF SAMPLE RESULTS SOILS UNDERLYING TRANSFORMERS

	S	Sample Locatio ample Depth (f		Statewide	Statewide
Analyte	S-13 1.0	S-14 0.8	S-15 1.0	Health Standard for Residential	Health Standard for Non-
		Result mg/kg		Use (mg/kg)	Residential Use (mg/kg)
Aroclor 1260	BDL	0.12	0.16	30	130
Notes: BDL =	Below Detection	on Limit		30	130

BDL = Below Detection Limit.

3.2 Subsurface Soil Sampling

On June 15, 2005, GTS personnel conducted fieldwork to collect subsurface soil samples (samples collected from a depth exceeding 2 feet below ground surface) to characterize potential contamination resulting from the historic use of the four (4) gasoline storage tanks at the Ohio Blenders property. The procedure used to collect the soil samples is described in the Site Characterization Plan (GTS, 2005). Prior to field activities, the Pennsylvania One Call System was initiated to determine subsurface utility line locations relative to the proposed boring locations. A gas line and a fiber optic cable were marked by the respective utility companies within the area of investigation. These utilities were observed to be located approximately in the areas identified as geophysical anomalies "B" and "C", respectively (see Figure 3).

A total of eight (8) borings (B-1 through B-8) were advanced using a Geoprobe in areas located adjacent to and/or downgradient from suspected UST system components. Three (3) borings were located to the east of the grain silos to characterize subsurface conditions in the area of the historic UST identified during review of secondary source information and the adjacent anomaly "F" identified during the geophysical investigation (Photograph 7). Five (5) borings were located just to the north of Gay Avenue to characterize subsurface conditions in the area of the three (3) historic USTs identified during review of secondary source information and the anomalies "A", "B", and "C" identified during the geophysical investigation (Photograph 8). Boring locations are shown on Figure 5.

GTS Technologies, Inc.

TABLE 2

Interim Site Characterization Report Keystone Color Works & Ohio Blenders Properties

City of York, Pa. December 1, 2005

SUMMARY OF SAMPLE RESULTS
SOILS WITHIN FORMER COAL STORAGE AREAS

1.0 1.0	Analyte	0					Sample Depth (ft.	Sample Depth (ft.)					_	Contactide Hank	
National Part National Par		1.0	1.0	3-18	S-19 0.8	S-20 1.0	S-21 0.8	8-22	8-23	8-24	8-25	8-26	8-27	Standard for	Standard for Non-
National State 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	PPL Metals						Result	(mg/kg)		0.7	0.0	0.5	0.8	(ma/ka)	residential Use
1	Antimony	4.0	200												ARL ARLL
National	Arsenic	000	BUL	4.6	3.4	BDL	BDL	BDL	BDI	187	200				
1.2 1.2	Beryllium	20.0	12.7	36.6	345	2.9	87.0	9.4	100	40.7	BUL	BDL	BDL	27	27
containt 2.2 1.9 3.6 1.4 0.54 4.1 2.4 2.4 3.2 1.3 1.3 1.1 1.2 3.2 3.9 1.1 1.2 3.2 3.2 3.5 1.1 1.2 3	Cadmium	1.4	0.57	1.3	0.56	0.54	1 4	10	000	5.0.3	14.4	11.1	23.2	12	53
129.3 10.0	Chromina	5.2	1.9	3.6	1.4	0.54		2	7.0	1.3	1.3	1.1	1.2	320	320
1417 110 140 120 110 140	Cindillum	29.3	7.0	16.1	21.8	12.04	1 2	2.4	3.2	2.9	2.9	2.6	2.8	38	350
13 13 13 13 13 13 13 13	Copper	117.	20.4	110	0.77	0.70	24.8	23.4	23.8	21.6	26.2	22.2	23.3	1/0	2001
1.2 0.41 1.2	Lead	868	81.1	100	0.4.0	76.4	81.8	22.2	21.4	50.1	35.4	25.0	2000	94	190
National Signature Signatu	Mercury	13		087	3,450	40.3	2,140	56.4	43.8	121	220	20.0	23.0	8,200	36,000
Secondary Seco	Nickel	7.00	4.0	1.2	7.1	BDL	1.3	0.34	0 24	0000	200.	195.	1.08	450	450
eur BDL BDL <td>Selenium</td> <td>7.60</td> <td>10.6</td> <td>25.1</td> <td>12.9</td> <td>16.5</td> <td>31.2</td> <td>18.5</td> <td>300</td> <td>0.00</td> <td>2.0</td> <td>2.2</td> <td>2.2</td> <td>10</td> <td>10</td>	Selenium	7.60	10.6	25.1	12.9	16.5	31.2	18.5	300	0.00	2.0	2.2	2.2	10	10
Styces S	Silver	BUL	4.4	12.2	9.3	BDL	BDI	4	0.03	8.8	21.1	20.0	26.2	650	650
Section BDL	Thallium	BUL	BDL	BDL	3.7	BDI	2	200	BUL	10.8	BDL	BDL	7.4	26	26
SyoCos 392 29.2 101 324 28.2 75.9 BDL BDL 19.9 114 119 BDL 2.9 114 naghthylene BDL BDL NA NA NA NA NA NA NA 119 119 115 12.000 naghthylene 0.150 BDL NA NA NA NA NA NA NA 2.00 colabityline BDL NA NA NA NA NA NA NA 2.00 colabityline BDL NA NA NA NA NA NA NA NA NA 2.00 colabityline BDL NA	Zio.	5.2	BDL	4.0	6.8	IC B	700		0.0	BDL	BDL	BDL	BDL	84	84
Second Particle Second Par	2000	392.	29.2	101	324	28.2	0.00	BUL	2.0	BDL	BDL	BDL	2.9	14	-
BDL BDL BDL NA	TL SVOCS					7.07	577	75.9	0.69	141.	119.	155.	179	12 000	1000
Name	Acenaphthene	BDL	BDI	NA	4	-								2,000	12,000
Name	cenaphthylene	0.150	BDL	Q N	1 2	AN.	AN A	AN	BDL	BDL	BDL	BDI	VIV	0000	
Occidity NA <	nthracene	0.0997	BDL	AZ	2 2	Y S	YZ.	AN	BDL	0.389	BDL	BDI	42	2,700	4,700
Outsign years 0.379 BDL NA NA NA BDL 2.810 0.143 0.167 NA 250 Outsign years 0.523 BDL NA NA NA NA NA 2.56 Outsign years 0.523 BDL NA NA NA NA 2.56 Outsign years 0.563 BDL NA NA NA NA 2.56 Outsign years 0.591 BDL NA NA NA NA 2.56 Outsign years 0.101 BDL NA NA NA NA 2.56 Active years 0.101 BDL NA NA NA NA NA NA 1.80 Active years 0.101 BDL NA	enzo(a)anthracene	0.533	BDL	AN	2 2	AN .	Y.	AN	BDL	0.178	BDL	BDI		2,300	006,9
Ocidiful perpendition	enzo(a)pyrene	0.379	BDI			NA.	AN	AN	BDL	2.810	0.143	0 107	2 2	350	320
October Octo	enzo(b)fluoranthene	0.523	IO8	(< 2	42	NA.	AN	AN	BDL	1.550	0 106	00000	1 4	27	110
Oil/Higher/plantene 0.391 BDL NA NA NA NA NA BDL 1.140 BDL 0.132 O.130 NA 25 Secole BDL NA NA NA NA NA BDL BDL NA 250 Secole BDL BDL BDL NA NA NA BDL BDL NA 250 Secole 1.010 BDL NA NA NA NA BDL BDL BDL NA 250 Recole 1.010 BDL NA NA NA NA NA NA 277 NA 216 Recole BDL BDL NA	enzo(g,h,i)perylene	0.563	I G	1 4	AN.	AN	NA	AN	BDL	2.310	0.172	0.0300	42	2.5	11
Ethylhexyliphthalate BDL NA NA NA NA NA BDL 180 azole 0.101 BDL NA NA NA NA NA 180 azole 0.101 BDL NA NA NA NA NA NA 250 sene 0.101 BDL NA NA NA NA NA 130 sene 1.010 BDL NA NA NA NA NA 130 scole 1.010 BDL NA NA NA NA NA NA NA NA 130 scole BDL BDL BDL BDL BDL BDL NA N	enzo(k)fluoranthene	0 391		AN.	AN	NA	AN	AN	BDI	1 440	27.70	0.152	Z Z	25	110
azole 0.101 BDL NA NA NA NA NA NA 2.100 0.133 0.130 NA 250 sene 0.101 BDL NA NA NA NA NA NA 1.30 NA 250 sene 1.010 BDL NA NA NA NA NA NA 1.30 NA 2.50 ratcla.hlanthracene BDL BDL NA NA NA NA NA NA 2.77 NA 2.50 ratcla.hlanthracene BDL BDL BDL BDL BDL BDL BDL NA 2.77 NA 2.30 ratcla.hlanthracene BDL BDL BDL BDL BDL BDL NA NA <t< td=""><td>is(2-Ethylhexyl)phthalate</td><td>200</td><td>BDL</td><td>AN</td><td>Y Y</td><td>AN</td><td>AN</td><td>ĄZ</td><td>and a</td><td>2 100</td><td>BUL</td><td>BDL</td><td>A Z</td><td>180</td><td>180</td></t<>	is(2-Ethylhexyl)phthalate	200	BDL	AN	Y Y	AN	AN	ĄZ	and a	2 100	BUL	BDL	A Z	180	180
sene 1,010 BDL NA NA NA NA NA NA NA 130 BDL	arbazole	1010	BOL	AN	AN	AN	AN	AN	100	700	0.133	0.130	A Z	250	610
1.00 BDL BDL NA NA NA NA NA BDL BDL BDL BDL BDL NA C230	hrysene		BDL	AN	AN	AN	A'N	AN	100	0.130	BDL	BDL	A Z	130	130
Todiuran BDL BDL BDL NA NA NA NA NA 237 NA 230 Pack responted result is BDL BDL BDL BDL NA NA NA NA NA 230 anthene BDL BDL BDL BDL BDL BDL BDL BDL NA	ibenzo(a,h)anthracene	0.00	BDL	AN	AN	AN	AN	AN	a loa	A 450	BDL	BDL	A Z	21	83
anthene and the reported result is Bell NA NA NA NA NA NA BDL BDL BDL BDL NA 2.5 anthene anthene 2. BDL BDL NA NA NA NA NA BDL BDL BDL BDL NA 3,200 that she can be compared to the reported result is Bell NA NA NA NA NA NA BDL BDL BDL BDL NA 2,900 anthene anthene 3. BDL NA NA NA NA NA NA BDL BDL BDL BDL NA 3,000 anthene anthene 3. BDL NA	ibenzofuran	200	BUL	AN	AN	AN	AN	AN	100	1.400	0.314	2.77	A'N	230	230
anthene 1.130 BDL NA NA NA NA BDL BDL BDL BDL NA 0.15 ene BDL BDL NA NA NA NA BDL BDL BDL BDL NA 3,200 loi(1.2,3-cdpyrene 0.427 BDL NA NA NA NA BDL BDL BDL BDL BDL NA 3,200 lublene BDL BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA NA BDL BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA NA BDL BDL BDL BDL BDL NA 2,900 entheme BDL BDL NA NA NA NA BDL BDL BDL BDL BDL BDL NA 2,900	iphenylhydrazine, 1.2-	200	BDL	AN	AN	AN	AN	AN	BOL	0.104	E E	BDL	Y Z	2.5	11
ente BDL BDL NA NA NA NA NA BDL 7830 0.315 NA 3.200 NA 3.	uoranthene	1 120	BDL	AN	AN	AN	AN	AZ	100	DO.	BDL	BDL	A N	•	
violute 2.2-depyrene BDL BDL NA NA NA NA NA 3.300 NA 3.200 vinaphihalene, 2- BDL BDL BDL BDL BDL BDL BDL NA NA NA NA 3.200 thalene BDL BDL BDL BDL BDL BDL BDL NA 3,000 anthrene BDL BDL BDL BDL BDL BDL BDL NA 2.900 e 1.080 BDL NA NA NA NA BDL BDL BDL NA 2.900 BDL The reported result is Below the laboratory Detection Limit: NA NA <t< td=""><td>uorene</td><td>051.0</td><td>BDL</td><td>AN</td><td>NA</td><td>AN</td><td>4Z</td><td>42</td><td>100</td><td>BUL</td><td>BDL</td><td>BDL</td><td>AN</td><td>0.15</td><td>0.58</td></t<>	uorene	051.0	BDL	AN	NA	AN	4Z	42	100	BUL	BDL	BDL	AN	0.15	0.58
Vinaphthalene, 2- BDL BDL BDL BDL BDL BDL BDL NA 3,000 Italiane BDL BDL BDL BDL BDL BDL BDL BDL BDL NA 25 Independence BDL NA NA NA NA BDL BDL BDL BDL NA 2,900 BDL The reported result is Below the laboratory Detection Limit NA NA NA NA NA NA 2,900	deno(1.2.3-cd)pygene	BUL	BDL	AN	AN	AN	AN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	7.830	0.376	0.315	AN	3,200	3 200
thatener 2. BDL BDL NA NA NA NA BDL BDL BDL NA 2.900 co. 100 c	ethylosopthologo 2	0.427	BDL	NA	AN	AN		1	BUL	BDL	BDL	BDL	AN	3,000	2000
Anthrene BDL BDL NA NA NA BDL BDL BDL NA NA NA BDL BDL BDL NA 2.900 BDL = The reported result is Below the laboratory Detection Limit: Continue BDL NA NA NA NA BDL C.760 C.760 C.760 C.760 C.760 C.760	and the leader	BDL	BDL	AN	AN	AN			BUL	1.440	0.100	0.965	AN	25	110
BDL = The reported result is Below the laboratory Detection Limit: 0.629 BDL NA NA NA NA BDL 0.457 0.172 0.156 NA 10,000 BDL = The reported result is Below the laboratory Detection Limit: NA NA NA BDL 6.760 3.330 0.268 NA 2.200	opposition of the contract of	BDL	BDL	AN	AN	AN			BUL	BDL	BDL	BDL	A Z	2.900	000 8
BDL = The reported result is Below the laboratory Detection Limit: NA NA NA BDL 6.760 3.330 0.268 NA 2.200		0.629	BDL	NA	NA N	AN		1	BDL	BDL	BDL	BDL	4Z	25	2,000
The reported result is Balow the laboratory Detection Limit.	2	1.080	BDL	NA	AN	AN		42	BDL	0.457	0.172	0.156	AN	10.000	10,000
	· -	ult is Below the la	boratory Dete	action Limit.		IA - NIO+ AS	700	1	BDL	6.760	3.330	0.268	A N		000,00

BDL = The reported result is Below the laboratory Detection Limit.

NA = No Statewide Health Standard values for total chromium have been established. This value for chromium VI has been used, as it is more restrictive than the value for chromium III.

GTS Technologies, Inc.

Interim Site Characterization Report Keystone Color Works & Ohio Blenders Properties City of York, Pa. December 1, 2005

ABLE 2 (continued)	SUMMARY OF SAMPLE RESULTS	SOILS WITHIN FORMER COAL STORAGE AREAS	
TABLE	SUMMARY	SOILS WITHIN FORM	

Analyte PPL Metals Antimony						Sample Depth (ft.)	Sample Depth (ft.)					-	Standard for	Standard for Non-
PL Metals ntimony	8-28	8-29	8-30	8-31	8-32	8-33	8-34	8-35	8-36	8-37	8-38	8-39	Residential Use	Residential Use
PL Metals ntimony	0.8	0.7	0.7	0.7	8.0	0.7	0.7	0.0		2.0	3		(mg/kg)	(By/Bu)
PL Metals ntimony				15 m 15 m 15 m		Result (mg/kg)	mg/kg)							
ntimony					- 10 mm - 10 m									7.0
1	17.9	BDL	BDL	BDL	BDL	3.2	BDL	BDL	BDL	4.6	BDL	BDL	27	17
	8 65	15.6	5.6	22.9	6.4	20.7	31.5	9.7	13.2	31.2	5.2	10.8	12	53
	1.1	- 2	88 0	4.9	0.54		0.88	0.58	0.79	0.84	1.2	1.4	320	320
berymum	- 0	5.0	2000	2 4	7		2.1	2.3	2.0	1.9	3.1	3.2	38	38
Cadmium	2.0	4.0	7.0	0.0	- 0		22.5	σ	12.4	28.9	19.4	39.2	941	1901
Chromium	24.0	73.5	15.0	20.00	0.01	41.0	0.00	78.7	20.3	43.5	44.4	41.2	8,200	36,000
Copper	122.	32.2	24.1	54.6	2.6	7.14	23.3	0.00	0.00	112	97.5	127	450	450
Lead	218.	90.3	87.9	147.	2.59	126.	2.0	01.0	0.00	0.70	2.5	1.4	10	10
Mercury	0.95	0.78	0.73	2.3	0.77	1.1	1.2	0.18	7.1	0.79	3		0.49	650
Nickel	108.	45.2	11.0	44.3	13.1	38.7	20.0	8.9	14.9	27.0	25.3	200.	000	30
Selenium	13.8	12.6	BDL	BDL	BDL	10.4	8.3	BDL	6.1	BDL	11.3	BDL	97	070
Silver	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	84	84
Thallium	3.5	BDL	BDL	BDL	BDL	3.0	3.6	BDL	BDL	BDL	BDL	3.3	14	14
Zinc	234.	112.	108.	349.	101.	204.	62.5	71.1	116.	97.4	135.	142.	12,000	12,000
PPL SVOCs					,									
Acenaphthene	BDL	AN	AN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	ΑN	2,700	4,700
Acenaphthylene	0.218	ΑN	ΑZ	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	AN	2,500	006'9
Anthracene	0.330	AN	AZ	BDL	BDL	0.0861	BDL	BDL	BDL	BDL	BDL	AN	350	350
Benzo(a)anthracene	0.365	AN	A'N	0.184	BDL	0.435	0.0910	BDL	BDL	0.490	0.232	AN	25	110
Benzo(a)pvrene	0.324	AN	A Z	0.154	BDL	0.333	0.0760	BDL	BDL	0.348	0.161	AN	2.5	11
Benzo(b)fluoranthene	0.760	AZ AZ	AZ AZ	0.174	BDL	0.405	0.100	BDL	0.0730	0.500	0.185	AN	25	110
Benzo(a,h,i)perylene	0.686	AN	AN	0.0980	BDL	0.353	BDL	BDL	BDL	0.342	0.143	AN	180	180
Benzo(k)fluoranthene	0.527	AN	AZ.	0.176	BDL	0.340	0.0920	BDL	BDL	0.424	0.189	AN	250	610
Bis(2-Ethylhexyl)phthalate	BDL	AZ.	A'N	BDL	0.425	BDL	BDL	BDL	BDL	BDL	0.306	AN	130	130
Carbazole	0.0950	AN	AN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	AN	21	83
Chrysene	1.540	AN	AN	0.267	0.0922	0.702	0.140	0.103	0.114	1.020	0.436	AN	230	230
Dibenzo(a,h)anthracene	0.129	AN	AZ	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	AN	2.5	11
Dibenzofuran	0.404	AN	AN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	A'N	*	•
Diphenylhydrazine, 1,2-	BDL	NA	AN	BDL	BDL	BDL	BDL	BDL	BDL	0.184	BDL	Y Z	0.15	0.58
Fluoranthene	1.540	AN	AN	0.450	0.133	0.989	0.176	0.111	0.146	1.280	0.645	AN	3,200	3,200
Fluorene	BDL	AN	ΑN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	AN	3,000	3,800
Indeno(1,2,3-cd)pyrene	BDL	ΑZ	AN	0.103	BDL	0.339	BDL	BDL	BDL	0.347	0.144	ΑN	25	110
Methylnaphthalene, 2-	0.448	AN	AN	BDL	BDL	BDL	BDL	BDL	BDL	0.116	BDL	AN	2,900	8,000
Naphthalene	0.340	AN	AN	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	ΑN	25	25
Phenanthrene	1.330	A'N	AZ AZ	0.333	BDL	0.353	0.0900	BDL	0960.0	0.632	0.338	ΥN	10,000	10,000
Pyrene	1.120	A'Z	AZ.	0.370	0.114	0.882	0.147	0.123	0.131	1.120	0.581	A Z	2,200	2,200

BDL = The reported result is Below the laboratory Detection Limit.

NA = Not Analyzed.

* = No Statewide Health Standard has been established for this analyte.

1 = No Medium Specific Concentration value for total chromium has been established. This value for chromium VI will been used, as it is more restrictive than the value for chromium III.

59.8

■ One or more Statewide Health Standard exceeded for analyte.

12

Interim Site Characterization Report Keystone Color Works & Ohio Blenders Properties City of York, Pa. December 1, 2005

TABLE 2 (continued)
SUMMARY OF SAMPLE RESULTS
SOILS WITHIN FORMER COAL STORAGE AREAS

PPL Metals 8-40 8-41 8-42 Antimony 0.7 0.7 0.7 Arsenic 15.2 10.7 7.2 Beryllium 1.2 1.4 1.5 Cadmium 2.8 3.1 3.4 Chromium 31.9 29.8 1.7 Copper 37.3 40.4 41.9 Lead 37.3 40.4 41.9 Mercury 0.89 1.2 0.76 Nickel 45.6 26.5 19.7 Selenium 98.1 65.9 86.4 Mercury 0.89 1.2 0.76 Nickel 45.6 26.5 19.7 Selenium BDL BDL BDL BDL Silve BDL BDL BDL AG.5 Acanaphthene BDL BDL NA Acanaphthene BDL BDL NA Benzo(s)filuoranthene 0.146 0.258 NA Be	8-43 1.0 1.0 6.5 6.5 2.7 2.7 2.7 2.7 2.17. 2.6 19.1 9.1 8DL 8DL 8DL 83.1	S-44									
BDL BDL 1.2 1.4 2.8 3.1 31.9 29.8 3.1 37.3 40.4 98.1 65.9 0.89 1.2 45.5 26.5 10.4 98.1 65.9 0.89 1.2 45.5 26.5 10.4 9.3 12.1 75.9 8DL	BDL 6.5 1.1 2.7 22.2 69.9 217. 2.5 19.1 9.1 9.1	0.7	1.0	8.46	0.7	8-48	8-49	S-50	3-51	Standard for Residential Use	Standard for Non- Residential Use
BDL BDL 1.2 1.4 2.8 3.1 31.9 29.8 3.1 37.3 40.4 98.1 65.9 0.89 1.2 45.6 26.5 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 10.4 9.3 9.3 10.4 9.3	8DL 6.5 1.1 2.7 22.2 69.9 217. 2.17 2.5 19.1 9.1 8DL 3.1		Result (mg/kg)	ng/kg)						(mg/kg)	(mg/kg)
15.2 10.7 1.2 1.4 2.8 31.9 29.8 37.3 40.4 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 98.1 66.9 66.	8DL 6.5 1.1 2.7 22.2 69.9 217. 2.5 19.1 9.1 8DL 8DL 33.1										
15.2 10.7 1.2 1.4 2.8 3.1 31.9 29.8 37.3 40.4 98.1 65.9 0.89 1.2 45.5 26.5 10.4 9.3 BDL BDL BDL BDL BDL BDL BDL BDL BDL Color BDL BDL BDL BDL BDL BDL BDL BDL B	6.5 1.1 2.7 22.2 22.2 217. 2.5 19.1 9.1 8DL 8DL 3.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	27	27
1.2 1.4 2.8 3.1 2.8 3.1 31.9 29.8 37.3 40.4 98.1 65.9 0.89 1.2 45.5 26.5 10.4 9.3 BDL C.121. 75.9 0.165 0.262 0.175 0.262 0.175 0.262 0.165 0.242 1.690 BDL	2.7 22.2 22.2 29.9 217. 2.5 19.1 9.1 8DL 3.1	6.4	7.3	7.2	12.0	15.0	7.7	12.0	8.6	12	53
2.8 3.1 31.9 29.8 37.3 40.4 98.1 65.9 0.89 1.2 45.5 26.5 10.4 9.3 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 8DL 90.175 0.262 0.176 0.262 0.176 0.262 0.176 0.262 0.176 0.262 0.169 0.165 0.176 0.272 0.177 0.258	22.2 22.2 22.2 59.9 217. 2.5 19.1 9.1 8DL 3.1	1.0	1.2	1.3	2.3	1.3	1.1	1.3	1.4	320	320
31.9 29.8 37.3 40.4 38.1 66.9 0.89 1.2 45.6 26.5 10.4 9.3 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL Color BDL BDL BDL 0.176 0.256 0.1169 0.1165 0.1169 0.1165 0.11	22.2 69.9 217. 2.5 19.1 9.1 8DL 3.1	2.1	2.7	2.7	3.7	3.2	2.4	3.3	3.0	38	38
37.3 40.4 98.1 65.9 0.89 1.2 45.5 26.5 10.4 9.3 BDL	2.5 2.5 19.1 9.1 8DL 3.1 151.	21.5	23.7	30.1	29.3	22.6	18.2	26.4	26.9	941	1901
98.1 66.9 0.89 1.2 45.5 26.5 10.4 9.3 BDL BDL BDL BDL BDL 121. 75.9 121. 75.9 BDL BDL BDL BDL BDL BDL BDL Color BDL	217. 2.5 19.1 9.1 BDL 3.1	47.4	23.9	28.9	43.1	52.3	37.8	35.0	38.7	8,200	36,000
9.89 1.2 45.5 26.5 10.4 9.3 BDL BDL BDL BDL BDL 121. 75.9 BDL BDL BDL BDL BDL BDL BDL BDL C.175 0.262 0.175 0.268 0.175 0.268 0.175 0.268 0.176 0.268 0.176 0.268 0.176 0.268 0.176 0.268 0.176 0.268 0.176 0.268 0.177 0.268 0.178 0.268 0.179 0.268 0.179 0.268 0.170 0.268 0.171 0.268 0.172 0.272 0.189 0.185 0.185 0.242 1.690 BDL BDL BDL	2.5 19.1 9.1 BDL 3.1	73.7	47.6	49.0	88.4	61.4	89.0	98.5	66.1	450	450
45.6 26.5 10.4 9.3 10.4 9.3 10.4 10.1 10.1 121. 12	9.1 BDL 3.1	0.86	0.50	0.45	99.0	0.94	0.36	0.91	0.86	10	10
10.4 9.3 BDL BDL BDL BDL 121. 75.9 BDL BDL BDL BDL BDL BDL C0.175 0.262 0.176 0.262 0.176 0.272 0.176 0.272 0.176 0.272 0.176 0.272 0.176 0.272 0.177 0.272 0.178 0.272 0.178 0.272 0.178 0.272 0.179 0.272 0.179 0.272 0.170 0.272 0.170 0.272 0.170 0.272 0.171 0.272 0.172 0.272 0.172 0.272 0.172 0.272	9.1 BDL 3.1 151.	17.9	16.1	19.0	21.8	28.3	15.8	21.5	20.9	650	650
BDL BDL BDL BDL 121. 75.9 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL Color Color Color	3.1 151.	BDL	8.0	BDL	BDL	BDL	BDL	BDL	BDL	26	26
BDL BDL 121. 75.9 BDL BDL BDL BDL BDL BDL BDL BDL 0.175 0.262 0.146 0.258 0.172 0.258 0.172 0.272 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL BDL BDL	3.1	BDL	1.6	BDL	10.5	9.6	BDL	9.7	BDL	84	84
121. 76.9 121. 121. 121. 121. 121. 121. 121. 12	151.	BDL	BDL	BDL	4.5	4.5	BDL	BDL	3.6	14	14
BDL BDL BDL BDL BDL BDL BDL BDL 0.175 0.262 0.146 0.258 0.172 0.272 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL BDL BDL		80.8	50.9	61.3	126.	65.2	91.5	88.9	95.2	12,000	12,000
BDL BDL BDL BDL BDL BDL BDL BDL 0.175 0.262 0.176 0.258 0.172 0.258 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL BDL BDL											
BDL BDL BDL BDL 0.175 0.262 0.146 0.258 0.172 0.272 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL BDL BDL	BDL	BDL	0.723	BDL	AN	BDL	BDL	BDL	BDL	2,700	4,700
BDL BDL BDL 0.175 0.262 0.175 0.268 0.176 0.258 0.172 0.272 0.169 0.165 0.245 0.245	BDL	BDL	BDL	0.290	AN	BDL	BDL	BDL	BDL	2,500	006'9
0.175 0.262 0.146 0.258 0.172 0.272 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL BDL BDL	0.106	0.293	1.180	0.304	AN	0.0758	0.147	BDL	BDL	350	350
0.146 0.258 0.172 0.272 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL 0.331 0.334	0.441	0.723	1.550	1.580	AN	0.183	0.533	0.143	0.186	25	110
0.172 0.272 0.169 0.165 0.165 0.242 1.690 BDL BDL BDL 0.371 0.354	0.307	0.557	0.999	0.820	AN	0.160	0.538	0.128	0.132	2.5	11
0.169 0.165 0.165 0.242 1.690 BDL BDL BDL 0.371 0.354	0.337	0.455	0.708	1.040	AN	0.181	0.456	0.169	0.127	25	110
0.165 0.242 1.690 BDL BDL BDL 0.371 0.354	0.246	0.520	0.710	0.413	AN	0.230	0.569	0.185	0.0982	180	180
1.690 BDL BDL BDL 0.371 0.354	0.264	0.432	0.793	0.867	AN	0.194	0.428	0.133	0.132	250	610
8DL 8DL 0.371 0.354	BDL	BDL	BDL	BDL	AN	BDL	BDL	BDL	BDL	130	130
0.371 0.354	BDL	BDL	BDL	BDL	AN	BDL	BDL	BDL	BDL	21	83
ica	0.758	1.470	2.900	1.840	AN	0.407	1.210	0.370	0.309	230	230
מטר	BDL	BDL	0.0850	BDL	AN	BDL	BDL	BDL	BDL	2.5	11
BDL	BDL	BDL	0.0916	BDL	AN	BDL	BDL	BDL	BDL		*
azine, 1,2- BDL	BDL	BDL	BDL	BDL	AN	BDL	BDL	BDL	BDL	0.15	0.58
lene 0.455 (1.210	1.270	2.530	2.560	AN	0.500	0.944	0.500	0.322	3,200	3,200
BDL BDL	BDL	BDL	0.788	BDL	AN	BDL	BDL	BDL	BDL	3,000	3,800
9	0.214	0.457	0.634	0.461	AN	0.193	0.498	0.159	0.0894	25	110
nalene, 2-	BDL	BDL	0.370	BDL	AN	BDL	BDL	BDL	BDL	2,900	8,000
BDL BDL	BDL	BDL	0.0983	BDL	AN	BDL	BDL	BDL	BDL	25	25
Ithrene 0.273	1.140	0.887	3.380	0.497	NA	0.370	0.422	0.384	0.376	10,000	10,000
Pyrene 0.518 NA	1.250	1.920	3.790	2.070	AN	0.454	1.420	0.458	0.121	2,200	2,200

TABLE 3
SUMMARY OF SAMPLE RESULTS
SOILS WITHIN FORMER UTILITY POLE STORAGE AREA

Interim Site Characterization Report

Keystone Color Works & Ohio Blenders Properties City of York, Pa. December 1, 2005

								Sample Location	ocation					
Analyte	0.7	S-2 0.7	S-3 0.7	S-4 0.8	S-5 0.8	8-6 0.8	S- 7 0.8	S-8 1.0	S-9 1.0	S-10 1.0	S-11 0.7	S-12 1.0	Statewide Health Standard for	Statewide Health Standard for Non-
						Result	Result (mollo)						nesidential Use	Residential Use
Acenaphthylene	BDI	0 218	000	-00		1000	RuRin						(mg/kg)	(mg/kg)
Anthracene	200	200	0.000	I I	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.500	6 900
Benzo(a)anthracene	0 000	PDL	BUL	BDL	BDL	BDL	BDL	0.088	BDL	BDL	BDL	BDL	350	350
Benzo(a)nyrene	0.325	0.363	0.110	BDL	0.179	0.221	BDL	0.367	0.151	BDI	BDI	108	25	000
Banzo(h)flioranthono	0.231	0.324	0.206	BDL	0.171	0.180	BDL	0.301	0.161	BDI	I CB	BOIL	25	
Benzola h ibandon	0.419	0.582	0.410	BDL	0.246	0.295	BDL	0.590	0.233	0.081	I Ca	100	2.5	
Delizoty, II, Ilperylene	0.134	0.268	0.361	BDI	0000	0 141	ica	0100	000	00.0	COL	DOL	67	011
Benzo(k)fluoranthene	0.325	0.439	0 214		000	1	BOL	0.278	0.229	0.088	BDL	BDL	180	180
Chrysene	0.825	0.00	0.0	BUL	0.212	0.214	BDL	0.406	0.177	0.085	BDL	BDL	250	610
Fluoranthene	0.020	0.707	0.731	0.113	0.295	0.411	BDL	0.902	0.464	0.216	0.159	BDL	230	230
Indeno(1 2 3-cd/pages	0.030	0.561	0.402	0.119	0.287	0.366	BDL	0.866	0.515	0.273	0.111	I Ca	3 200	0000
Phonographical	0.149	0.291	0.347	BDL	0.112	0.140	BDL	0.275	0.209	0.087	- Ca	100	2,200	3,200
Pyropo	0.186	0.225	0.171	BDL	0.081	0.199	BDL	0.361	0.288	7000	0.075	BDI	200001	00000
Notes: BOI The The Control of the Co	0.708	0.526	0.307	0.107	0.256	0.318	BDL	0.841	0.446	0.240	0.07	BDL	0,000	10,000

Interim Site Characterization Report Keystone Color Works & Ohio Blenders Properties City of York, Pa. December 1, 2005

TABLE 5
SUMMARY OF SAMPLE RESULTS
SOILS WITHIN AREA OF HISTORIC GASOLINE USTS


				Sample Sample D	Sample Location Sample Depth (ft.)				Statewide Health Standard	Statewide Health Standar
Analyte	B-1	B-2 10-12	B-3 12-13	B-4 16-18	B-5 13-15	B-6 14-15	B-7 12-14	B-8 13-14.7	for Residential Use (mg/kg)	(mg/kg)
				Result	Result ma/kg					
	0.0813	ICA	BDI	BDI	BDL	BDL	0.0078	BDL	0.5	0.5
penzene	0.0	2	1							
Cumene	BDL	BDL	BDL	BDL	0.224	BDL	BDL	0.141	780	1,600
(Synonym: Isopropyipenzene)								-		ABO
700	541	50.7	23.4	16.2	25.9	21.1	46.8	27.7	450	430
Lean						0	C	Ca	25	25
Naphthalene	0.587	0.092	BUL	BUL	BUL	BUL	ממר	7		
101.000	0 133	BDI	BDI	BDL	BDL	BDL	0.0017	BDL	100	200
Olderie	0				100	0	2	100	1 000	1,000
Xylenes, Total	252.6	BDL	BDL	BDL	BDL	BDL	BUL	DOL		
Notes: BDL = Below Detec	tection Limit.									
	•	Section of the sectio		The second second second		,				

BDL = Below Detection Limit.

450 = One or more Statewide Health Standard exceeded for analyte

APPENDIX D

Well Logs

Drilling Equipment Client : Northwest Triangle : Schramm Air Rotary ARM Project : 07214 **Borehole Diameter** : 6" : 2" Township : York City Casing Diameter County, State : York, PA Date Started : 1/3/08 : DOB ARM Representative Date Completed : 1/4/08 Checked By Weather : 20's, sunny Drilling Company : Eichelbergers 0 hr Depth to GW : NA Monitoring Well: MW-1S Driller : Justin Trish 24 hr Depth to GW : 38' (2 of 2) Well: MW-1S Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 26--PVC riser -bentonite 31 36 -6" borehole -sand pack -PVC screen 41 09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-1S.bor 46-End of Boring at 48.0' 51

Monitoring Well: MW-2S

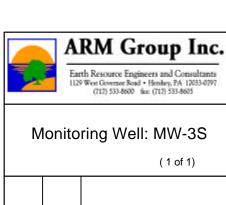
Client : Northwest Triangle

ARM Project : 07214 Township : York City County, State : York, PA

: DOB ARM Representative Checked By

Drilling Company : Eichelbergers Driller

: Justin Trish


Drilling Equipment : Schramm Air Rotary

Borehole Diameter : 6" Casing Diameter : 2" Date Started : 1/3/08 Date Completed : 1/3/08 Weather : 20's, sunny 0 hr Depth to GW : 13.5' TOG

24 hr Depth to GW : 13.40' TOC

	urface ev.(ft.)	Description	Graphic	Well: MW-2S TOC Elev.: — locking cap	Remarks
5-		0.0 - 9.0': Fill, brown to red to gray, sandy clay, moist, brick, gravel, railroad ties.		4" steel manway -cement grout -PVC riser	PID reading = 0 ppm at 5'
10-	_	9.0 - 22.0': Sandy CLAY, brown, moist to wet.		— bentonite	PID reading = 0 ppm at 9'
15-				sand pack PVC screen	Void from 14' to 17' Wet at 17' Odor at 17'
25—		22.0 - 25.0': Limestone, blue to gray. End of Boring at 25.0'			TOR at 22'

09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-2S.bor

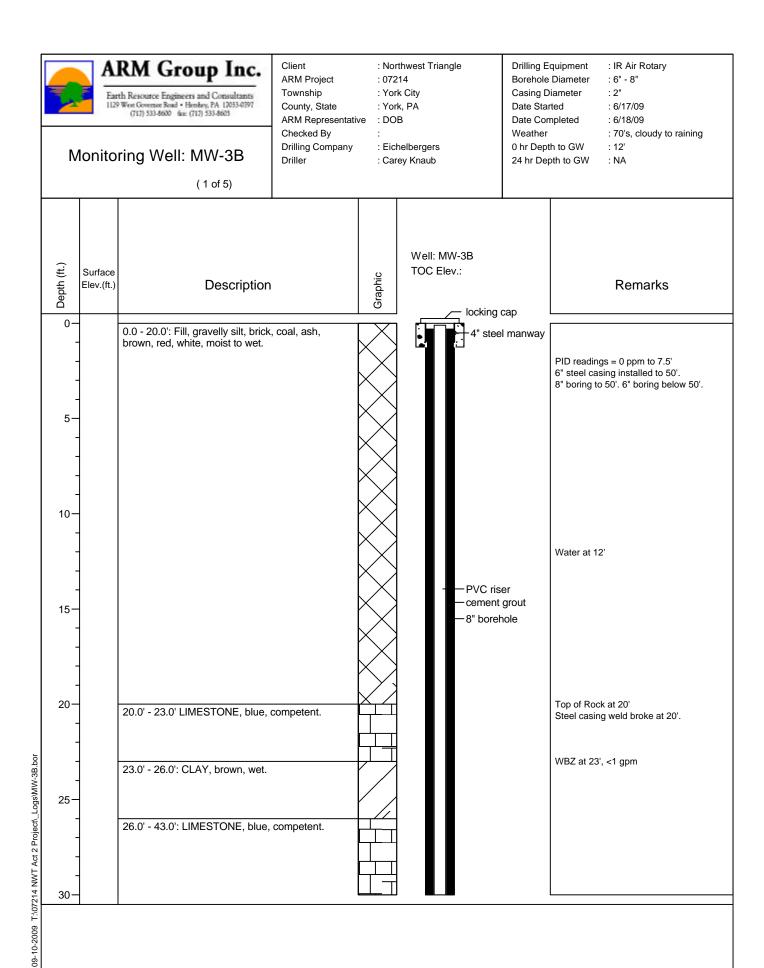
Client : Northwest Triangle

ARM Project : 07214
Township : York City
County, State : York, PA
ARM Representative : DOB

Checked By :

Drilling Company : Eichelbergers
Driller : Carey Knaub

Drilling Equipment : IR Air Rotary
Borehole Diameter : 6" - 8"


Casing Diameter : 2"

Date Started : 6/18/09
Date Completed : 6/19/09
Weather : 70's, sunny

0 hr Depth to GW : 15' 24 hr Depth to GW : NA

	(1 of 1)				
Depth (ft.)			Vell: MW-3S ΓOC Elev.: ✓ locking α	cap	Remarks
5-	0.0 - 8.0': Fill, gravelly silt, brick, coal, ash brown, red, white, moist to wet.			grout er	D readings = 0 ppm to 7.5'
10-	8.0' - 9.0': VOID 9.0' - 23.0': FILL, gravelly silt, brick, coal, brown, red, white, moist to wet.	sh,		ole	ater at 15'. Water has creosote odor.
25-	23.0' - 24.0' LIMESTONE, blue, weathere 24.0' - 28.0': LIMESTONE, blue, compete			То	p of Rock at 23'
30-	28.0' - 30.5': CLAY, brown, wet.			Wa	ater-bearing zone at 28' (~2 gpm)

09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-3S.bor

Client : Northwest Triangle **Drilling Equipment** : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 6" - 8" Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/17/09 : DOB ARM Representative Date Completed : 6/18/09 Checked By Weather : 70's, cloudy to raining Drilling Company : Eichelbergers 0 hr Depth to GW : 12' Monitoring Well: MW-3B Driller : Carey Knaub 24 hr Depth to GW : NA (2 of 5) Well: MW-3B Depth (ft.) Surface TOC Elev.: Graphic Elev.(ft.) Description Remarks 30 8" borehole 35 cement grout PVC riser 40-WBZ at 43', >1 gpm. 43.0' - 44.0': LIMESTONE, fractured, clay. Approximately 4 gpm total flow. 44.0' - 47.0': LIMESTONE, blue, competent. 45bentonite 47.0' - 48.0': CLAY, brown, wet. 48.0' - 80.0': LIMESTONE, blue, competent. 50 09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-3B.bor —sand pack —PVC screen 55-60

Client : Northwest Triangle : IR Air Rotary **Drilling Equipment** ARM Project : 07214 **Borehole Diameter** : 6" - 8" Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/17/09 ARM Representative : DOB Date Completed : 6/18/09 Checked By Weather : 70's, cloudy to raining Drilling Company : Eichelbergers 0 hr Depth to GW : 12' Monitoring Well: MW-3B Driller : Carey Knaub 24 hr Depth to GW : NA (3 of 5) Well: MW-3B Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 60-65-70 -PVC screen -sand pack 75-80-80' Total flow is 1 gpm 80.0' - 81.0': LIMESTONE, blue, weathered. 81.0' - 113': LIMESTONE, blue, competent. 09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-3B.bor 85-90

Mor	nitor	ring Well: MW-3B	Client ARM Project Township County, State ARM Representati Checked By Drilling Company Driller	: 072 : Yor : Yor ive : DO : : Eicl	k City k, PA	Borehole Casing D Date Sta Date Cor Weather 0 hr Dep	rted : 6/17/09 mpleted : 6/18/09 : 70's, cloudy to raining
	urface ev.(ft.)	Description		Graphic	Well: MW-3B TOC Elev.:		Remarks
90-		113.0' - 114.0': LIMESTONE, blue, o			PVC sc.—sand pa	reen	114' Total flow is 1-2 gpm

Client : Northwest Triangle Drilling Equipment : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 6" - 8" Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/17/09 : DOB ARM Representative Date Completed : 6/18/09 Checked By Weather : 70's, cloudy to raining Drilling Company : Eichelbergers 0 hr Depth to GW : 12' Monitoring Well: MW-3B Driller : Carey Knaub 24 hr Depth to GW : NA (5 of 5) Well: MW-3B Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 120 125 -PVC screen -sand pack 130 End of boring at 130.0' 135-140-09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-3B.bor 145-150

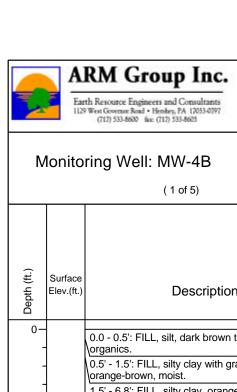
Client : Northwest Triangle

ARM Project : 07214
Township : York City
County, State : York, PA
ARM Representative : DOB

Checked By :

Drilling Company : Eichelbergers
Driller : Carey Knaub

Drilling Equipment : IR Air Rotary


Borehole Diameter : 8"
Casing Diameter : 2"
Date Started : 6/17/09
Date Completed : 6/17/09

Weather : 70's, cloudy to raining

0 hr Depth to GW : 22' 24 hr Depth to GW : NA

	<u> </u>	(1 of 1)				
Depth (ft.)	Surface Elev.(ft.)	Description		Graphic	Well: MW-4S TOC Elev.:	Remarks
0		0.0 - 0.5': FILL, silt, dark brown to organics. 0.5' - 1.5': FILL, silty clay with gravel, trace sarpieces of brick. 6.8' - 8.0': FILL, silty clay, orange gray-brown, moist, few weathered gravel. 8.0' - 11.5': FILL, gravelly silt, orato gray-brown, pieces of coal and throughout, moist to wet. 11.5' - 26.0': clayey silt with fine sayellow-brown to gray-brown, wet.	-brown, nd, few -brown to d limestone nge-brown ash		- cement - PVC rise - bentonit	PID readings = 0 ppm to 16.0' t grout ser ite
20 —		26.0' - 30.0': LIMESTONE, tan, v	veathered.		PVC scr	Water at 22' Top of Rock at 26'

09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-4S.bor

Client : Northwest Triangle

ARM Project : 07214 Township : York City County, State : York, PA : DOB ARM Representative

Checked By

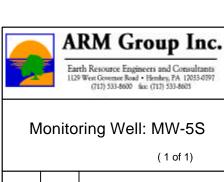
Drilling Company : Eichelbergers Driller : Carey Knaub

Drilling Equipment : IR Air Rotary

Borehole Diameter : 8" Casing Diameter : 2" Date Started : 6/16/09 Date Completed : 6/16/09 Weather : 70's, cloudy

0 hr Depth to GW : 25' 24 hr Depth to GW : NA

		(1 of 5)					
Depth (ft.)	Surface Elev.(ft.)	Description	:	Graphic	Well: MW-4B TOC Elev.:	ran	Remarks
0- - - 5- - - 10- - - - 15-		0.0 - 0.5': FILL, silt, dark brown to organics. 0.5' - 1.5': FILL, silty clay with grader orange-brown, moist. 1.5' - 6.8': FILL, silty clay, orange moist to wet, little gravel, trace sapieces of brick. 6.8' - 8.0': FILL, silty clay, orange gray-brown, moist, few weathered gravel. 8.0' - 11.5': FILL, gravelly silt, orato gray-brown, pieces of coal and throughout, moist to wet. 11.5' - 25.0': Clayey SILT with fin yellow-brown to gray-brown, wet.	black, moist, vel, brown, nd, few brown to I limestone nge-brown ash		4" steel	manway	PID readings = 0 ppm to 16.0' 6" steel casing set to 30'.
20—		25.0' - 27.0': LIMESTONE, gray, 27.0' - 28.0': LIMESTONE, gray, 28.0' - 29.0': LIMESTONE, gray, weathered. 29.0' - 40.0': LIMESTONE, tan, v competent.	competent.		— cement (grout ole	Water at 25' Top of Rock at 25'


09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-4B.bor

Client : Northwest Triangle **Drilling Equipment** : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 8" Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/16/09 : DOB ARM Representative Date Completed : 6/16/09 Checked By Weather : 70's, cloudy 0 hr Depth to GW Drilling Company : Eichelbergers : 25' Monitoring Well: MW-4B Driller : Carey Knaub 24 hr Depth to GW : NA (2 of 5) Well: MW-4B Depth (ft.) Surface TOC Elev.: Elev.(ft.) Description Remarks 31 36-40.0' - 41.0': LIMESTONE, tan, gray, 41 weathered. 41.0' - 54.0': LIMESTONE, tan, gray, competent. -PVC riser 46 cement grout 8" borehole 51-Total flow approximately 2 gpm. 54.0' - 55.0': LIMESTONE, tan, weathered. 09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-4B.bor 55.0' - 65.0': LIMESTONE, tan, blue, 56 competent. 61-

Client : Northwest Triangle **Drilling Equipment** : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 8" Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/16/09 : DOB ARM Representative Date Completed : 6/16/09 Checked By Weather : 70's, cloudy Drilling Company : Eichelbergers 0 hr Depth to GW : 25' Monitoring Well: MW-4B Driller : Carey Knaub 24 hr Depth to GW : NA (3 of 5) Well: MW-4B Depth (ft.) Surface TOC Elev.: Elev.(ft.) Description Remarks 62 65.0' - 66.0': CLAY, brown, wet. 66.0' - 85.0': LIMESTONE, tan, blue, cement grout 67competent. -PVC riser 72 bentonite 77 -8" borehole 82--sand pack WBZ at 85', approximately 1 gpm. 85.0' - 86.0': LIMESTONE, tan, blue, weathered. 09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-4B.bor -PVC screen 86.0' - 107.0': LIMESTONE, tan, blue, 87 competent. 92-

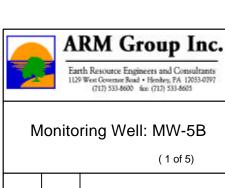
Drilling Equipment Client : Northwest Triangle : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 8" Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/16/09 : DOB ARM Representative Date Completed : 6/16/09 Checked By Weather : 70's, cloudy Drilling Company : Eichelbergers 0 hr Depth to GW : 25' Monitoring Well: MW-4B Driller : Carey Knaub 24 hr Depth to GW : NA (4 of 5) Well: MW-4B Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 93-98-Total flow is approximately 3 gpm. 103-107' - 108': LIMESTONE, blue, weathered. −sand pack −PVC screen 108 108' - 150': LIMESTONE, blue, competent. -8" borehole 113-09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-4B.bor 118-123-

	ring Well: MW-4B	Drilling Company Driller		nelbergers ey Knaub	Weather 0 hr Dept 24 hr Dep	: 70's, cloudy : 25' : NA
Surface Elev.(ft.)	Description		Graphic	Well: MW-4B TOC Elev.:		Remarks
124- - - - 129- - - 134- - - - - - - - - - - - - - - - - - -	End of Boring at 150'.			sand property of the control of the	ack creen hole	

Client : Northwest Triangle

ARM Project : 07214 Township : York City County, State : York, PA : DOB ARM Representative

Checked By


Drilling Company : Eichelbergers Driller : Carey Knaub

Drilling Equipment : IR Air Rotary

Borehole Diameter : 8" Casing Diameter : 2" Date Started : 6/15/09 Date Completed : 6/16/09 Weather : 80, sunny 0 hr Depth to GW : 25' 24 hr Depth to GW

: NA

Depth (ft.)	Surface Elev.(ft.)	Description	Graphic	Well: MW-5S TOC Elev.:		Remarks
0- - - - - 5-		0.0 - 0.6': FILL, silty gravel, dark brown to gray, moist. 0.6' - 5.0': FILL, silty clay, yellow-brown, moist, few pieces of brick, coal, and ash throughout. 5.0' - 8.5': FILL, gravelly silt, gray-brown, moist, pieces of coal, brick, and ash		locking ca 4" steel n —cement gr —PVC riser	nanway o	PID readings = 0 ppm to 10.0'
- - 10- - - - 15-		throughout. 8.5' - 23': FILL, silty clay, orange-brown, moist to wet, little sand, few gravel, pieces of coal and ash.		— bentonite	le	
20— - - - - 25—		23.0' - 29.0': LIMESTONE, tan, weathered.		sand pack		Top of Rock at 23' Water at 25'
30-		29.0' - 30.0': LIMESTONE, blue, competent. End of boring at 30.0'				

Client : Northwest Triangle

ARM Project : 07214
Township : York City
County, State : York, PA

ARM Representative : DOB Checked By :

Drilling Company : Eichelbergers
Driller : Carey Knaub

Drilling Equipment : IR Air Rotary

Borehole Diameter : 8" to 33', 6" below 33'

 Casing Diameter
 : 2"

 Date Started
 : 6/15/09

 Date Completed
 : 6/16/09

 Weather
 : 80, sunny

 0 hr Depth to GW
 : 29'

0 hr Depth to GW : 29' 24 hr Depth to GW : NA

		(1 of 5)					
(;;;) ;;; L	Surface Elev.(ft.)	Description		Graphic	Well: MW-5B TOC Elev.:	cap	Remarks
0 —		0.0 - 0.6': FILL, silty gravel, dark by gray, moist. 0.6' - 5.0': FILL, silty clay, yellow-moist, few pieces of brick, coal, a throughout. 5.0' - 8.5': FILL, gravelly silt, gray-moist, pieces of coal, brick, and a throughout. 8.5' - 23': FILL, silty clay, orange-to wet, little sand, few gravel, piece and ash.	orown, nd ash -brown, ash			l manway	PID readings = 0 ppm to 10.0' 6" steel casing set to 33'
		23.0' - 29.0': LIMESTONE, blue, weathered, some calcite. 29.0' - 30.0': VOID. 30.0' - 54.0': LIMESTONE, blue,					Top of Rock at 23' Water at 29' (<1 gpm)

09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-5B.bor

Client : Northwest Triangle **Drilling Equipment** : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 8" to 33', 6" below 33' Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/15/09 ARM Representative : DOB Date Completed : 6/16/09 Checked By Weather : 80, sunny 0 hr Depth to GW Drilling Company : Eichelbergers : 29' Monitoring Well: MW-5B Driller : Carey Knaub 24 hr Depth to GW : NA (2 of 5) Well: MW-5B Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 31 36--PVC riser 41 46 cement grout 8" borehole 51-WBZ at 54' (approximately 1 gpm) 54.0' - 55.0': LIMESTONE, brown, blue, weathered. 09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-5B.bor -PVC screen 55.0' - 64': LIMESTONE, blue, competent. 56 61-

Client : Northwest Triangle **Drilling Equipment** : IR Air Rotary : 8" to 33', 6" below 33' ARM Project : 07214 **Borehole Diameter** Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/15/09 : DOB ARM Representative Date Completed : 6/16/09 Checked By Weather : 80, sunny 0 hr Depth to GW Drilling Company : Eichelbergers : 29' Monitoring Well: MW-5B Driller : Carey Knaub 24 hr Depth to GW : NA (3 of 5) Well: MW-5B Depth (ft.) Surface TOC Elev.: Elev.(ft.) Description Remarks 62 64.0' - 66.0': LIMESTONE, blue, weathered. 66.0' - 68.5': LIMESTONE, blue, competent. 67 68.5' - 69.0': LIMESTONE, blue, weathered. 69.0' - 150.0': LIMESTONE, blue, competent. Very little flow after 69' 72 -PVC screen -cement grout 77 8" borehole 82-09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-5B.bor 87 92-

Client : Northwest Triangle Drilling Equipment : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 8" to 33', 6" below 33' Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/15/09 : DOB ARM Representative Date Completed : 6/16/09 Checked By Weather : 80, sunny Drilling Company : Eichelbergers 0 hr Depth to GW : 29' Monitoring Well: MW-5B Driller : Carey Knaub 24 hr Depth to GW : NA (4 of 5) Well: MW-5B Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 93cement grout bentonite 98-103--PVC screen 108--8" borehole -sand pack 113-09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-5B.bor 118-123-

Client : Northwest Triangle Drilling Equipment : IR Air Rotary ARM Project : 07214 **Borehole Diameter** : 8" to 33', 6" below 33' Township : York City Casing Diameter : 2" County, State : York, PA Date Started : 6/15/09 : DOB ARM Representative Date Completed : 6/16/09 Checked By Weather : 80, sunny Drilling Company : Eichelbergers 0 hr Depth to GW : 29' Monitoring Well: MW-5B Driller : Carey Knaub 24 hr Depth to GW : NA (5 of 5) Well: MW-5B Depth (ft.) TOC Elev.: Surface Elev.(ft.) Description Remarks 124 129-134 -PVC screen -sand pack -8" borehole 139-144-09-10-2009 T:\07214 NWT Act 2 Project_Logs\MW-5B.bor 149-End of Boring at 150'. 154-

APPENDIX E

Site Photographs

Site looking northwest.

Site looking northeast.

Using Mini-Excavator to check for underground storage tanks.

Soil sampling with a geoprobe.

Installing MW-5S.

Installing MW-3S.